Identifying Fast Li Ions at the Interfaces in Composites of Ionic Liquids and Li Salts by ⁷Li NMR Relaxation Measurements

 $\underline{\text{Bernhard Stanje}}^1,$ Patrick Bottke 1, Ilie Hanzu 1, Maciej J. Marczweski 2, Patrik Johansson 2, Martin Wilkening 1,3

¹ Institute for Chemistry and Technology of Materials, Christian Doppler Laboratory for Lithium Batteries, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria; ² Department of Applied Physics, Chalmers University of Technology, 41296, Göteborg, Sweden; ³ Alistore-ERI European Research Institute, 33 rue Saint Leu, 80039 Amiens, France

 $E ext{-}Mail: wilkening@tugraz.at$

New electrolytes are needed in lithium-based battery research in order to increase both safety and electrochemical performance. The mixture of an ionic liquid with a lithium salt represents a conceptually new class of electrolytes for high-temperature lithium batteries, termed "ionic liquid-in-salt" [1]. We used ⁷Li NMR spectroscopy, see, e.g., [2], to study both local electronic structures and Li^+ self-diffusion in LiTFSI and $Li_x EMIM_{(1-x)}TFSI$ with x = 0.9. The NMR spectra, recorded under static conditions, perfectly agree with the results from differential scanning calorimetry. Upon heating to 513 K they clearly reveal several double phase regions; the known solid-state phase transformation of LiTFSI can be well recognized by the change of the quadruple powder pattern of the ⁷Li NMR spectra of LiTFSI. A rapid increase in long-range ion conductivity, within two orders of magnitudes, takes place when the 1/2 EMIMTFSI/LiTFSI phase starts to melt. This behaviour can also be monitored by temperature-variable ⁷Li spin-lattice relaxation (SLR) NMR. If recorded up to delay times of 1000 s, the pronounced bi-exponential $^7\mathrm{Li}$ SLR NMR transients found directly reveal a subset of highly mobile Li ions, partly identified as [Li(TFSI)₂], which can be well discriminated from the response of pure LiTFSI. Most likely, this Li⁺ sub-ensemble, which is anticipated to be located at the LiTFSI:EMIMTFSI interfacial regions, is responsible for the enhanced ion conductivity observed.

Acknowledgement. We thank our colleagues at the University of Hannover and the TU Graz for valuable discussions. Financial support by the Deutsche Forschungsgemeinschaft (WI3600/2-2 and 4-1) as well as by the Austrian Federal Ministry of Science, Research and Economy, and the Austrian National Foundation for Research, Technology and Development is greatly appreciated.

- "Ionic Liquids-in-Salt" A Promising Electrolyte Concept for High-temperature Lithium Batteries?,
 M. Marczewski, B. Stanje, I. Hanzu, M. Wilkening, P. Johansson, Phys. Chem. Chem. Phys. 16 (2014) 12341.
- [2] Li Ion Dynamics along the Inner Surfaces of Layer-Structured 2H-Li_xNbS₂, B. Stanje, V. Epp,
 S. Nakhal, M. Lerch, M. Wilkening, ACS Appl. Mater. Interfaces 7 (2015) 7.

