A Sinterless Garnet Li₇La₃Zr₂O₁₂ Thick Film as a Basis of All-Solid-State Li-Ion Battery

P. Jeevan Kumar^{1,2}, <u>Mamoru Senna^{1,3}</u>, P. Kazuto Kijima⁴, Chie Hirayama⁴, C. Vinod Chandran⁵, Kai Volgmann⁵, Paul Heitjans⁵, Naonori Sakamoto^{1,4}, Naoki Wakiya^{1,4}, Hisao Suzuki^{1,4}

¹ Research Institute of Electronics, Shizuoka University, 3 Chome-5-1 Johoku, Naka Ward,

432-8561, Hamamatsu, Japan;² Centre for Nanomaterials and MEMS, Department of Physics,

Nitte Meenakshi Institute of Technology (NMIT), P.B.No.6429, Bangalore, 560064, India;
³ Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohoama, 223-8522,

Yokohama, Japan; ⁴ Graduate School of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku,

432-8561, Hamamatsu, Japan; ⁵ Institut für Physikalische Chemie und Elektrochemie, Universität Hannover, Callinstr. 3-3a, 30167 Hannover, Germany

E-Mail: senna@applc.keio.ac.jp

A thick film of garnet type cubic $Li_7La_3Zr_2O_{12}$ (c-LLZO) with 1 wt% Al was prepared from a paste comprising c-LLZO nanoparticles synthesized via a mechanochemically assisted solid-state route [1] and Li-ion conducting polymeric binder (Li-PAA) with varying Li: PAA molar ratio. Structural, chemical and electrochemical properties of the thick film was examined by using various analytical tools, among others, ⁶Li MAS NMR. The Li ion conductivity peaked at the molar ratio, Li: PAA = 3: 1, with the value of $8.15 \cdot 10^{-5}$ S \cdot cm⁻¹, which is half of that of the sintered pellet [1]. The chemical shift of the main ⁶Li NMR peak is significantly lower from Li-PAA than that of LLZO, as shown in Fig. 1, indicating strong exchange of Li species between Li-PAA and c-LLZO. The observed upfield shift by Li-PAA is presumably associated with the partial hydration of Li⁺. The mixture of LLZO and Li-PAA exhibits its chemical shift just between these two values, indicating the Li⁺ exchange between those of LLZO and Li-PAA. Interpretation of these changes in the ⁶Li NMR spectra will further be elucidated from the viewpoints of atomic distance and coordination number by virtue of detailed X-ray diffractograms and vibration spectra, which are now on going. Some preliminary results of the electrochemical properties of the thick film by using a half cell indicates potentiality of the present thick film to apply to the all solid Li-ion batteries.

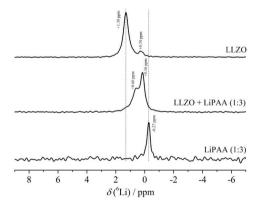


Figure 1: ⁶Li NMR spectra of LLZO power, LLZO-Li-PAA thick filme and Li-PAA binder.

[1] A Novel Low-Temperature Solid-State Route for Nanostructured Cubic Garnet Li₇La₃Zr₂O₁₂ and its Application to Li-Ion Battery, P. Jeevan Kumar, K. Nishimura, M. Senna, A. Düvel, P. Heitjans, T. Kawaguchi, N. Sakamoto, N. Wakiya, H. Suzuki, RSC Adv. 6 (2016) 62656.

