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Abstract
We present a self-consistent calculation of the mono vacancy formation energy for seven sim-
ple metals Li, Na, K, Rb, Cs (all bcc), Al (fcc) and Mg (hcp) using both model and ab initio
pseudopotential used in earlier unified studies. The local model pseudopotential calculations
show small variations with respect to different exchange-correlation functions and the results
are in fair agreement with other similar calculations and the available experimental data.
The comparisons show that reliable model (pseudo) potential for simple metals can indeed be
obtained for explaining a host of properties. Also, considering the importance of third order
term in ab initio calculations, the results of our second order calculation appear fairly rea-
sonable and are comparable with other first principle calculations. The perturbation series
being an oscillating one, we hope to improve the calculational results using suitable series
convergence acceleration method in the next part of our study.

Keywords: Point defects, vacancy formation energy, pseudopotential perturbation theory, ab initio
pseudopotential, linear dielectric screening, exchange and correlation function.

1. Introduction

Departure from perfect lattice structure, affects the kinetics and thermodynamics of metals and alloys
and it is very important to develop a good understanding of their properties, in particular their energetics.
The simplest kind of imperfection is point defects (vacancies and interstitials) and the relevant vacancy
formation energy is very important for diffusion and transport phenomena.

The pseudopotential method has been very successful in the determination of stable crystal structure
and other atomic properties of perfect simple metals. Moreover, the pseudopotential approach can account
for even more complex problem like defects in a simple manner since perfectly ordered arrays of ions are
not required [1]. The pseudopotential, representing the bare electron-ion interactions, together with the
self-consistent linear screening theory offers a powerful tool for the study of defects in metals and in fact,
the vacancy formation energy has previously been derived by Harrison [2].

Even for the simple metals, there exist very few calculations in the literature using either first prin-
ciple/ab initio (without any adjustable parameter) or reliable model pseudopotentials which give a fair
account for a number of other metallic properties. In this paper we present a self-consistent calculation
of the vacancy formation energy for seven simple metals Li, Na, K, Rb, Cs (bcc), Al (fcc) and Mg (hcp)
using both model and ab initio pseudopotentials (AP), used in earlier unified studies. Effect of different
exchange and correlation functions (ECF) or the local-field correction factor (fq) to the dielectric function
representing linear screening due to the electron-electron interaction of metallic solids are also studied.

Local Heine-Abarenkov (HA) model pseudopotential [3] calculations up to second order in perturba-
tion theory using two different (Taylor [4] and Vashishta-Singwi [5]) exchange and correlation functions,
with model parameters determined from earlier unified studies of lattice mechanical (both dynamic and
static) and transport properties [6] for the simple metals are presented. The results are compared with
earlier important studies of Ho [7] and Popovic et al [8] and others and also with the experimental results.

A (semi-)local version [9] of the ‘norm-conserving’ ab initio pseudopotential, derived earlier by
Bachelet et al [10], was found to provide a reasonable account for a host of lattice mechanical properties
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of simple metals. We have also calculated the vacancy formation energy for the seven simple metals using
this version of AP with five different exchange-correlation functions (Geldart-Vosko [11], Sham [12] and
Sarkar et al [13] in addition to the other two) in second order (perturbation) approximation.

2. Theory
The structure-dependent parts of the total energy per ion of a simple metal, arising from three interaction
potentials (ion-ion, ion-electron and electron-electron) are given by the band-structure and electrostatic
terms. Any deformation in crystal structure changes these two terms only. For a pure lattice, they are
given by [2]:

Estr = Ees + Ebs =
∑

q

′ |Sq|2 Uq − U0 (1)

with,

Uq = lim
η→∞

2πz2e2

Ωq2
exp(

−q2

4η
) + |wq|2 χq εq and U0 = lim

η→∞

z2e2√η
√

π

where εq = 1 − 4πe2

q2
(1− fq)χq is the static dielectric function,

Sq, fq, and χq being the structure factor, the ECF and the Lindhard response function (static) respec-
tively; screened pseudopotential formfactor wq is the plane wave matrix elements of bare ion-electron
pseudopotential divided by εq and Ω is the ionic volume. Here the band structure energy (Ebs) is derived
using second order perturbation formalism using pseudopotential and the bare ion formfactor w0

q for the
usual two parameter HA pseudopotential is given by:

w0
q = −4πze2

Ωq2
{(1 + u) cos qrc −

u

qrc
sin qrc} (2)

On the other hand, the full nonlocal ab initio pseudopotential is formally written as:

ŵ = w(r) +
∑

l

wl(r) P̂l

where P̂l is the projection operator on angular momentum l. The analytical forms for w(r) and wl(r)
together with the tabulated parameters are given in [10]. The Fourier transform of the local part w(r) plus
the matrix element of the purely nonlocal part ŵnl between the initial |~ki〉 and the final |~kf 〉 plane-wave
states comprise the generalized formfactor. The contribution of the nonlocal part is given by

〈~kf |ŵnl|~kf 〉 =
4π

Ω

∑
l

(2l + 1) Pl(cos θ)

×
∫

wl(r)jl(|~ki|r)jl(|~kf |r)r2dr (3)

where, spherical symmetry of the ionic pseudopotential is assumed and Pl and jl are Legendre polynomials
and spherical Bessel functions respectively, with

cos θ =
~ki.~kf

(|~ki| |~kf |)
.

The formfactors are determined using a semilocal approximation beyond the ‘on-Fermi-sphere’ approxi-
mation by considering scattering in all possible directions (on and off the Fermi sphere) [9]. The usual
local approximation retains only the on-Fermi-sphere (OFS) back scattering terms in eqn.(3) which gives
formfactors that result in a large value of resistivity (almost double) for simple metals such as Na, Mg
and Al. The formfactors w0

q of AP so determined are considerably short ranged, smooth with fewer
oscillations and smaller amplitude [9] (more than 25% reduction of the formfactor at the first maximum
near 1.9kf for Al compared to the OFS value) and appears to retain some essential nonlocal features as
indicated by Heine and Weaire [14]. It should be also noted that, the approximation saves a lot of com-
putation compared to the nonperturbative nonlocal calculation and yet produces reasonable agreement
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with experimental values which suggests fair degree of reliability of the semilocal formfactors.

Finally, the single vacancy (or monovacancy) formation energy up to 2nd order perturbation is given
by [1]

E1v
f =

∑
q0

′ q0

3
∂Uq0

∂q0
+

Ω
2π2

∫ ∞

0

Uq q2 dq, (4)

where q0 and q represent the discrete and quasi-continuous wave numbers respectively.

3. Results
The results of our calculations with model pseudopotentials are presented and compared with other sim-
ilar calculations in Table-II. The pseudopotential parameters are adjusted to satisfy the extrapolated
‘harmonic’ equilibrium condition exactly and an overall agreement of different lattice mechanical prop-
erties [6]. The ‘harmonic’ equilibrium lattice constants and the model parameters of the seven simple
metals are given in Table-I. For Al and Mg, an arbitrary exponential cut-off factor exp(−ζq2

4k2
F

) is applied
to the formfactor of eqn.(2) for better convergence. Our model pseudopotential calculations of vacancy
formation energy show small variations with respect to different exchange-correlation functions and the
results are in fair agreement with the experimental data. The comparison shows that reliable model
(pseudo)potential for number of simple metals can indeed be obtained for explaining a host of properties.

Table-I : The ‘harmonic’ equilibrium lattice constants and HA model parameters for both Taylor (T) and
Vashishta-Singwi (VS) ECFs (taken from earlier unified studies [6].)

Metals Lattice Constant ‘a’ Model HA + T Model HA + VS
(harmonic values)

in au rc in au u ζ rc in au u ζ
Li 6.5621 1.4850 -0.1990 0 1.4958 -0.254 0
Na 7.9403 2.2985 -0.6177 0 2.3540 -0.675 0
K 9.8624 3.1550 -0.6545 0 3.2780 -0.738 0
Rb 10.5338 3.5835 -0.7384 0 3.7210 -0.808 0
Cs 11.4226 3.9596 -0.7341 0 -
Al 7.5811 1.2745 -0.3438 0.05 1.2586 -0.3418 0.05
Mg 6.01564 c/a = 1.6231 1.68 -0.568 0.10 -

Table-II : Results of the present calculation of vacancy formation energy in Ryd. using HA local model
pseudopotentials, compared with other model calculations and experimental data.

Metals Ho Chulkov Popovic Present calculation Expt.
GV VS et al∗ HA+T HA+VS

Li 0.027 0.021 (0.028) 0.032 0.030 0.0294a 0.0250b

0.0353c

Na 0.029 0.030 (0.035) 0.027 0.026 0.0287a 0.0309d

0.0265e

K 0.026 0.026 (0.031) 0.031 0.027 0.0287a

Rb 0.026 0.023 (0.032) 0.028 0.026 0.0198f

Cs 0.024 0.021 (0.030) 0.029 - 0.0206g

Al 0.063 (0.065) 0.064 0.059 0.056h

Mg 0.066 0.045 0.047 - 0.043i 0.059j

∗ Results given within parenthesis are of calculations with present formulation using model potential
parameters and local-field correction factors of Popovic et al calculations [8].

a Ref.[15], b Ref.[16], c Ref.[17], d Ref.[18], e Ref.[19], f Ref.[20], g Ref.[21], h Ref.[22], i Ref.[23],
j Ref.[24].

The formulation of vacancy formation by Popovic et al [8] is based on the previous work of Ho [7]
, but with some modifications. They have maintained vacancy formation as a bulk phenomenon while
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Ho’s derivation involves surfaces. According to the authors, “The differences are not numerically very
significant in the alkalis but are critical in Al for which we obtain satisfactory results” compared to those
from Ho’s theory.

There is also a minor difference with the energy expression of our formulation. In Popovic et al
formulation, one atom is taken out to keep the lattice volume fixed and a relaxation term is considered.
The relaxation energy term, although can be formulated in this constant volume condition, is usually
very small as pointed out by Ho [7]. The vacancy relaxation in alkali metals is less than 4% and for Al,
it is about 2% of the radial distance for the nearest neighbours. The relaxation energy is only about
10 − 15% of the vacancy formation energy and is, however, not a determining factor for calculating
formation energy [25-27]. Popovic and Carbotte [28] have also formulated the lattice statics method for
hcp metals and their calculated relaxation energy indicates that in Mg, as is the case in Al, the relaxation
contribution to the vacancy formation energy is small. Chulkov [29] has studied the vacancy formation
energy of hcp metals Be and Mg along with other polyvalent metals without taking into account lattice
relaxation energy. In his extensive second order perturbation calculations with four different local-field
correction factors including those of Geldart-Vosko (GV) and Vashishta-Singwi (VS), he used Krasko and
Gurskii model pseudopotential. For Mg, the calculation gives reasonable results which are compared in
Table-II.

Our calculated vacancy formation energies appear to be slightly higher compared with others’ calcu-
lations, where a relaxation term appears. Also, Popovic et al have used high temperature lattice constant
and bulk modulus as inputs to determine the model potential parameters and pointed out that vacancy
formation energy decreases with increasing temperature. This might be one reason for difference in the
results. Yoshioki and Mori [30] and So and Woo [31] have extended their studies for simple metals (Na, K,
Al and Mg) to third-order, using local and nonlocal model pseudopotentials respectively. The significance
of these studies will be discussed in the next section.

It is also appropriate to note here that, the formation energy measurements are generally much less
precise and reproducible. The theoretical procedure employed to extract formation energies from exper-
iments is based on a theorem proven in the harmonic approximation only and the assumption regarding
the similarity of the effect of anharmonicity on both the vacancy formation and lattice expansion warrants
further scrutiny.

Bachelet et al have developed a consistent set of ‘norm-conserving’ ab initio pseudopotentials for
almost all elements across the entire periodic table to reproduce the results of all-electron calculations
for the self-consistent electronic structure of atoms and with optimum transferability to various systems.
However, the calculations with this nonlocal potential require huge computation which restricts the scope
of extensive theoretical studies. In an earlier work, one of the authors of the present paper has deter-
mined the formfactors using a semilocal approximation beyond the on-Fermi-sphere approximation. The
pseudopotential formfactors together with the linear dielectric screening provides encouraging results for
various lattice mechanical and transport properties of simple metals in a perturbative calculation beyond
second order. In Table-III, the results of our calculations of simple metal vacancy formation energies
using this ab initio pseudopotential are compared with the experimental data.

Table-III : Simple metal vacancy formation energies in Ryd. using ab initio pseudopotential (up to second
order) with five different dielectric functions.

Metals Sham Geldart Vashissta Taylor Sarkar
-Vosko -Singwi

Li 0.051 0.050 0.043 0.045 0.046
Na 0.035 0.035 0.035 0.029 0.030
K 0.056 0.054 0.053 0.055 0.059
Rb 0.064 0.062 0.064 0.067 0.071
Cs 0.079 0.078 0.083 0.091 0.095
Al 0.070 0.083 0.038 0.033 0.069
Mg 0.087 0.087 0.063 0.060 0.081

Except for Na and Al, the results of our second order ab initio calculations differ appreciably from
the available experimental data for the other simple metals. This is expected considering the importance
of the higher order perturbation contribution. Several studies [26,32-37] on defect properties of metals
using ab initio pseudopotential have been reported in the literature. However, the studies are in most
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cases made for only one or two metals in isolation. In the next section we discuss our result and compare
it with other ab initio calculations.

4. Discussions
DuCharme and Weaver have earlier observed [1] that the model potentials which best fit the phonon
dispersion curves produce the most reasonable values of activation energy. The model pseudopotentials
of our earlier unified studies, give satisfactory description of the phonon dispersion curves of the simple
metals under study. From our present calculations it appears that second-order perturbation theory with
Heine-Abarenkov local model pseudopotential give fairly good account of the properties of the simple
metals under investigation.

In both Yoshioki-Mori calculations using local model pseudopotential and So-Woo calculations with
two nonlocal model pseudopotentials for simple metals, comparison shows that the maximum third-order
perturbation contribution is only about 7% of the corresponding second-order contribution. This means
that the perturbation series do converge reasonably well in all these cases. The calculated third-order
vacancy formation energies for Na and K agree fairly with corresponding experimental values. But, since
the vacancy formation energies in the second order is a small difference of two large quantities, for mul-
tivalent Mg and Al, both the convergence and as well as the agreement of the overall results with the
experimental values get worsened with the inclusion of the third-order terms [31]. However, we have
found that since the order-wise sums of the perturbation series make an oscillating series, the results can
be improved to reasonable values using series convergence acceleration procedures.

Several authors have studied the defect properties of metals using different first principle techniques
including ab initio pseudopotential. Calculations of both the relaxed and unrelaxed constant volume
formation energy and the formation volumes at constant pressure have been reported in the literature.
Frank et al [32] in their investigation using ‘norm-conserving’ ab initio pseudopotential have noted that
the vacancy migration energy for Li is appreciably small and the vacancy formation energy is very close
to the experimental value of activation energy. Apart from this study, Benedek et al [33] and Pawellek et
al [34] have also calculated the formation energy for Li using ‘norm-conserving’ pseudopotentials. Schott
et al [35] and Jacucci and Taylor [26], however, have calculated the vacancy formation energies for the
three alkali metals Li, Na and K.

The result of our second order formation energy calculation for Li compared well with the results 0.039
Ryd, 0.040 Ryd, 0.044 Ryd, 0.042 Ryd and 0.038 Ryd as obtained by Schott et al (using Kohn-Sham
density functional approach), Frank et al, Pawellek et al, Benedek et al (all using ‘norm-conserving’
ab initio pseudopotentials) and Jacucci and Taylor (using ab initio DRT pair potential) respectively.
Similarly, for Na and K our results are comparable with those obtained by Schott et al. Also, the first
principle calculations by Polatoglu et al [36] and Gillan [37] for Al also comparable with our results.

For Li, Na, Al and Mg the contributions of nonlocal part are reasonably smaller compared to those
from local part and for K, the two are comparable. But for heavier alkali metals Rb and Cs, nonlocal
contributions are even greater than those from the local parts! This is, however, expected since nonlocality
appears as a general characteristic of a single-particle description of a manybody system [38]. Ab initio
pseudopotentials are derived from all-electron atomic reference states with the requirement that the
pseudo and all-electron valence eigenstates and energy agree beyond a chosen core radius. This makes
them nonlocal and larger the atom – stronger the nonlocality.

For K, Rb and Cs and also for the polyvalent metal Al and Mg, different exchange-correlation func-
tions produce large variations in nonlocal contributions. For heavier alkali metals, there are considerable
variations in the local contributions too. More importantly, for all the simple metals studied here, the
nonlocal contributions are significant to the overall formation energy values. In general, the contributions
of the successive l-terms in the nonlocal part are of decreasing importance. Beyond l = 2, the contri-
butions are found insignificant for Rb and Cs and we have ignored presumably further insignificant S-O
coupling terms in ab initio pseudopotential of Ref. [10] for these two metals.

The results of our ab initio second order calculation appear fairly reasonable considering the impor-
tance of third order term [9] and are comparable with other first principle calculations. The five different
exchange-correlation functions used in our second order calculation show some variations among them-
selves. The variations are most prominent with Vashishta-Singwi and Taylor ECFs in the case of Al.
For ab initio pseudopotentials higher order perturbation terms usually become important and can not be
neglected.

The present study clearly indicates that, at least for the simple metals, reliable local model pseu-
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dopotential may be constructed for second order perturbation calculation to provide a fair description of
both the perfect and imperfect lattice properties. On the other hand, a microscopic study with ab initio
pseudopotential requires beyond second order perturbation term(s). However, it appears that the semilo-
cal approximation adopted here retains the essential nonlocality of Bachelet et al ’s AP in explaining the
defect properties of the simple metals. We intend to extend the present study with the higher order per-
turbation terms of the semilocal ab initio pseudopotential. The perturbation series being an oscillating
one [9], reasonable improvement of the calculational results are expected with the use of suitable series
convergence acceleration procedures. Only then, a proper assessment of the different exchange-correlation
functions would be possible.
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