Diffusion Limitations and Effectiveness Factor of Mesoporous and Hierarchically Structured Catalysts for SCR-DeNO_x

<u>E. Saraci^{1*}</u>, R. Arndt¹, J. Kullmann¹, D. Enke¹, T.-A. Meier², D. Belder², M.-O. Coppens³, R. Gläser¹

^a Institute of Chemical Technology, Universität Leipzig, Leipzig, Germany.

^b Institute of Analytical Chemistry, Universität Leipzig, Leipzig, Germany.

^c Department of Chemical Engineering, University College London, London, United Kingdom.

^{*}erisa.saraci@uni-leipzig.de

Due to stricter environmental regulations for minimizing NO_x emissions, the urge to apply efficient catalysts is a worldwide concern. Among the technologies for controlling NO_x -emissions, the selective catalytic reduction of NO_x (SCR-DeNO_x) is the main industrial application. Vanadia supported on mesoporous titania is the most common catalyst wash-coated on SCR monoliths [1]. Such wash-coats lack a well-defined pore architecture, which leads to diffusion limitations and compromised material use. Theoretical studies have shown that by introducing macropores in a conventional SCR catalyst, its efficiency can be increased by up to 180% [2]. However, a direct proof of the effect of pore hierarchy on the catalytic activity of SCR-DeNO_x reaction is lacking.

In order to experimentally investigate the effect of additional macropores in a SCR catalysts, mesoporous and hierarchically structured (meso-/macroporous) V_2O_5/TiO_2 mixed oxides with different V_2O_5 -contents (1, 3.5 and 5 wt.%) were prepared via a modified sol-gel method [3]. Characterization results show that the catalysts have similar content and nature of V_2O_5 -species,

higher overall reaction

rate over the whole

independent of their pore architecture. The diffusion effect on

the catalytic activity was measured for a mesoporous catalyst by

varying its grain size. By using the Weisz-Prater criterion to

estimate the Thiele modulus and the effectiveness factor from

the observed reaction rates, diffusion limitations were indeed

found for the DeNO_x reaction (ϕ ~3 and η ~0.7) for $\bar{d}_{cat,grain}$ = 0.25 mm (Figure 1). The results from SCR of NO with NH₃ (m_{cat}=

0.2 g, $\bar{d}_{cat.grain} = 0.25$ mm, T = 423–773 K, GHSV = 21.300 h⁻¹,

 $n(NO)/n(NH_3) = 2/1$) over mesoporous and hierarchical

 V_2O_5/TiO_2 catalysts show that NO conversion increases with

V₂O₅-content. However, the hierarchical catalysts exhibit a

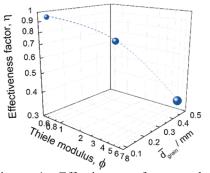


Figure 1: Effectiveness factor and Thiele modulus for different grain sizes of the 5 wt.% V_2O_5/TiO_2 mesoporous catalyst.

mesoporous catalyst. temperature range (T_R = 423– 773 K) when compared to their mesoporous counterparts with same V₂O₅-content. The NO consumption rate (r_{NO}) increases by up to 200%, and the light-off temperature ($T_{Light-off}$) decreases by 50 K when additional macropores are present (Figure 2). Considering the surface properties of the materials and the fact that DeNO_x is limited by intraparticle diffusion, the higher activity of the meso-/macroporous catalysts (for the same V₂O₅ content) can be attributed to diffusion facilitation within the catalyst particle. These results provide the first experimental proof of the advantage of pore hierarchy in SCR-DeNO_x as predicted earlier from theoretical calculations [2].

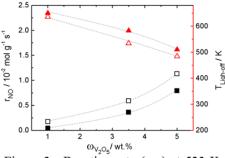


Figure 2: Reaction rate (r_{NO}) at 523 K and light-off temperature $(T_{Light-off})$ during SCR-DeNO_x over mesoporous and hierarchical V₂O₅/TiO₂ catalysts with different V₂O₅-content.

References

[1] P. Forzatti: Present status and perspectives in de-NOx SCR catalysis. Appl. Catal. A. 222, 221-236 (2001).

[2] G. Wang, M.-O. Coppens: Calculation of the optimal macropore size in nanoporous catalysts and its application to DeNO(x) catalysis. Ind. Eng. Chem. Res. 47, 3847-3855 (2008).

[3] G. Hasegawa. K. Kanamori, K. Nakanishi, T. Hanada: *Facile Preparation of Hierarchically Porous TiO*₂ *Monoliths*. J. Am. Cer. Soc. **93**, 3110-3115 (2010).

