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?gchacon@correo.cua.uam.mx, *inti@xanum.uam.mx, †dll@xanum.uam.mx

Abstract
This study focuses on the derivation of a general effective diffusion coefficient to describe the two-
dimensional (2D) diffusion in a narrow and smoothly asymmetric channel of varying width that lies on a
curved surface, in the simple diffusional motion of noninteracting point-like particles under no external
field. To this end we extend the generalization of the Kalinay-Percus’ projection method [J. Chem.
Phys. 122, 204701 (2005); Phys. Rev. E 74, 041203 (2006)] for the asymmetric channels introduced
in [J. Chem. Phys. 137, 024107 (2012)], to project the anisotropic 2D diffusion equation on a smooth
curved manifold into an effective one-dimensional generalized Fick-Jacobs equation which is modified
due to the curvature of the surface. The lowest order in the perturbation parameter, corresponding to the
Fick-Jacobs equation, contains an extra term that accounts for the curvature of the surface. We found
explicitly the first order correction for the invariant effective concentration, which is defined as the
correct marginal concentration in one variable, and we obtain the first approximation to the effective
diffusion coefficient analogous to Bradley’s coefficient [Phys. Rev. E 80, 061142 (2009)] as a function
of metric elements of the surface. Straightforwardly we study the perturbation series up to the n-th
order, and we derive the full effective diffusion coefficient for 2D diffusion in a narrow asymmetric
channel, which have modifications due to the curved metric. Finally, as an example we show how to
use our formula to calculate the effective diffusion coefficient considering the case of an asymmetric
conical channel embedded on a torus.

1. Introduction
Diffusion theory played a major role in science and technology. Effective control of transport in several
micro- and nanostructures requires a deep understanding of the diffusive mechanisms. The diffusion
of particles or, more generally, small objects, spatially confined within quasi-one-dimensional systems
(pores, channels, fibers or carbon nanotubes) has gained increasing attention over the last decade be-
cause such systems are ubiquitous in both nature and technology [1]. However, the analysis of transport
through them traditionally has been addressed using usual diffusion equation on flat spaces.

It is well known that in biophysics and nanotechnology the diffusion can occur on a given two-
dimensional (2D) curved surfaces, for instance, the lateral motion of integral proteins or receptors
embedded on lipid bilayers. The biological membranes are primarily composed of hundreds of differ-
ent lipids and huge diversity of proteins spatially and temporally organized as a requirement for its
biological function [2, 3]. Lateral mobility of components of cell membranes can be hindered by the
presence of impermeable heterogeneities, lipid microdomains, patches and rafts, with the effective dif-
fusion constant thus being reduced [4]. Furthermore, the apparent anisotropy in the effective diffusion
on cell membranes is due to real biological membranes containing tubular networks, holes, and large
curvature variations. The boom of new techniques, such as the single-particle tracking, fluorescence re-
covery after photobleaching and fluorescence correlation spectroscopy has allowed for unprecedented
ways to study the motion of proteins, molecular receptors, and lipids on the cell surfaces; and has
greatly furthered our understanding of its crucial role in the cellular functioning [5, 6, 7].
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In material science, surface processes are of high importance. The applications range from self-
organized growth of nanostructures over crystal growth, shape transitions in alloys, and adsorption
and desorption phenomena to surface reactions among others [8, 9, 10]. Analysis of the experimental
data have reveled that in some cases, diffusion on curved surfaces proceeds at a different rate from the
conventional diffusion on the plane.

Aside from the development of experimental procedures, the problem of particle transport through
confined structures on flat spaces has led to recent theoretical efforts to study diffusion dynamics ap-
pearing in those geometries [11]. Earlier studies by Jacobs and Zwanzig triggered renewed research
on this subject [12, 13]. The so-called Fick-Jacobs (FJ) approach consists in eliminating transverse
stochastic degrees of freedom by assuming fast equilibration in such directions.

For wide quasi-one-dimensional structures, one can map particle motion onto an effective one-
dimensional description in terms of diffusion along the midline of the channel y0(x), in the presence
of entropy potential Uent(x) given by βUent(x) = ln(1/w(x)), where x is the particle coordinate
measured along the x axis, w(x) is the channel width as a function of x, β = 1/(kBT ), kB is the
Boltzmann constant, and T is the absolute temperature.

Using the entropy potential, one can write the one-dimensional Smoluchowski equation for the
probability density p(x, t) in the channel, namely,

∂

∂t
p(x, t) =

∂

∂x

[
D(x)e−βU(x) ∂

∂x
eβU(x)p(x, t)

]
, (1)

where D(x) is a position-dependent diffusion coefficient. Equation (1) is equivalent to the generalized
FJ equation,

∂

∂t
p(x, t) =

∂

∂x

[
D(x)w(x)

∂

∂x

p(x, t)

w(x)

]
. (2)

This equation with a position-independent diffusion coefficient, D(x) = D0, is known as the FJ
equation [13].

Recently, using the projection method proposed by Kalinay and Percus (KP)[14], a more general
effective diffusion coefficient in two dimensions was obtained [15] (DP),

D(x) =
D0

w′(x)

{
arctan

[
y′0(x) +

w′(x)

2

]
− arctan

[
y′0(x)−

w′(x)

2

]}
. (3)

Equation (3) generalizes all known effective diffusion coefficients theoretically derived so far for 2D
narrow channels, and was validated recently by brownian dynamicas simulations [16, 17, 18]. Setting
y′0(x) = 0 in Eq. (3), KP’s results for symmetric channels is recovered,

D(x) ≈ DKP(x) =
arctan[12w

′(x)]
1
2w
′(x)

D0. (4)

If w′(x) = 0, the case of a serpentine channel previously studied by Yariv and co-workers [19] is
obtained,

D(x) ≈ DYBK(x) =
D0

1 + y′0(x)
2
. (5)

Furthermore, when Taylor expansion of Eq. (3) is kept up to the first order in w′(x) and y′0(x), the
diffusion coefficient proposed by Bradley [20] (Br) is recovered,

D(x) ≈ DBr(x) = D0

(
1− y′0(x)2 −

1

12
w′(x)2

)
, (6)

which is essentially the same as obtained two years later by Berezhkovskii and Szabo [21],

D(x) ≈ DBS(x) =
D0

1 + y′0(x)
2 + 1

12w
′(x)2

. (7)

In this work we briefly summarize the results on the projection of two-dimensional diffusion to
a one-dimensional effective dimension on a curved surface through the KP’s method, that was first
presented in [22].
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2. Effective one dimensional diffusion on a curved surface
In order to study the diffusion in narrow channels, Kalinay and Percus [14] proposed a projection
procedure that allows us to obtain corrections in terms of an expansion parameter namely, λ = D1/D2,
beingD1 6= D2, the constant diffusion coefficient in the transversal and longitudinal directions. In order
to proceed with the method, we first have to consider anisotropic diffusion, physically this means that
the transverse contribution is transient and can be separated from the longitudinal one, projecting by
integration.

First of all we need to write the diffusion equation for the anisotropic case on a two-dimensional
Riemannian surface. This was achieved by using the corresponding operators for gradient and the
divergence on the surface [23, 24]

∂C̃

∂t
=

1
√
g

∂

∂xα

(
√
gDα

βg
βγ ∂C̃

∂xγ

)
, (8)

where xα are the local coordinates on the surface, and g is the determinant of the metric gαβ . Notice
that in eq. (8) we are considering C̃ =

√
gC instead of C for the concentration, this is to guarantee

the right scalar structure of the equation [23, 24]. The anisotropic diffusion tensor appearing in (8) is
defined with respect to the local coordinates on the surface as,[

Dα
β

]
=

(
D1 0
0 D2

)
. (9)

Let us notice that in principle it does not depend on the metric components because we are con-
sidering the case when diffusion is anisotropic over the orthogonal directions of the local coordinates
on the surface. For isotropic diffusion Dα

β = D0 δ
α
β , and Eq. (9) reduces to an equation with the

Laplace-Beltrami operator [25, 26, 27]. In the literature there are several studies that show similar
results obtained by this parameterization [28, 29, 30, 31].

Let us now consider the case of a metric that describes symmetrical surfaces with local coordinates
(χ, η), which is diagonal, and whose components only dependent on one of the local coordinates. In
this case its metric can be written as,

[gαβ] =

(
g1(χ) 0
0 g2(χ)

)
,
[
gαβ
]
=

(
g−11 (χ) 0

0 g−12 (χ)

)
. (10)

Although it looks like a very restrictive condition, there are many surfaces of interest that fulfill
this requirement [32, 33]. In this way the diffusion equation only contains square roots of the metric
components and is reduced to the following,

∂C̃(χ, η, t)

∂t
=

Dχ√
g1g2

∂

∂χ

[√
g2
g1

∂

∂χ
C̃(χ, η, t)

]
+

Dη√
g1g2

√
g1
g2

∂2

∂η2
C̃(χ, η, t). (11)

The next step in the procedure is to integrate (11) on the transient variable η, to this end we first
have to define the one-dimensional marginal concentration, namely,

c(χ, t) ≡
∫ f2(χ)

f1(χ)
C̃(χ, η, t)dη, (12)

where the geometry of the channel is given by the boundaries defined by the functions f1(χ) and f2(χ).
Equation (11) can be integrated by means of the fundamental theorem of Calculus applying the

Leibniz rule [15]. Then imposing boundary conditions that produce a flow parallel to the channel
walls, and keeping leading orders in parameter λ = Dχ/Dη, a Fick-Jacobs type equation on a curved
symmetric surface is obtained [22],

∂c(χ, t)

∂t
=

Dχ√
g1g2

∂

∂χ

(√
g2
g1
w(χ)

∂

∂χ

c(χ, t)

w(χ)

)
. (13)

From this last equation it is possible to apply the Kalinay and Percus’ perturbation method [14] by
expanding the concentration in the parameter λ and then by an iterative process, allowing us to obtain
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systematically higher order terms in λ. These corrections are contained in a generalization of the diffu-
sion coefficient which can now be considered as dependent on the longitudinal coordinate χ. After this
cumbersome procedure, it is possible to recognize the series that comes form the recurrence scheme,
reaching the generalization of the expression found by Dagdug and Pineda [15] for two dimensional
asymmetric channels, now for a curved surface,

D(χ) =
D0

w′(χ)

√
g1
g2

{
arctan

[√
g2
g1

(
y′0(χ) +

w′(χ)

2

)]
− arctan

[√
g2
g1

(
y′0(χ)−

w′(χ)

2

)]}
.

(14)
Up to the date, this is the most general effective diffusion coefficient for 2D narrow channels that was
obtained by the KP procedure.

3. Diffusion on narrow channels on the surface of a torus
In this section we study the effective diffusion of a narrow channel embedded on a torus. These kind
of surfaces have an important role in physics as well as in some biophysical systems [34]. A scheme
of a channel embedded on this surface is show in figure 1. A torus is a surface of revolution generated
by rotating a circle in three-dimensional space about an axis which is outside the circle. The torus can
be parameterized by two angles θ and ϕ, both varying form 0 to 2π; and two constant radii b < a,
corresponding to the inner and outer circles respectively. With this parametrization the line element is
given by,

ds2 = (a+ b cos θ)2 dϕ2 + b2dθ2. (15)

Figure 1: A schematic representation of an asymmetric channel on the surface of the torus is presented. The
boundary functions f1(θ) and f2(θ), as well as the width function w(θ) are shown.

Torus’ curvature depend on the corresponding angle θ and is given by K = cos θ/[b (a+ b cos θ)]
[32, 33]. From (15) we notice that just one of the metric coefficients is function of local coordinates
[22]. The longitudinal variable is identified with bθ. The metric coefficients can be written as follows,

g1(θ) = b2, g2(θ) = (a+ b cos θ)2 . (16)

This last two relations allow us to write out the following ratio,√
g1(θ)

g2(θ)
=

1
a
b + cos θ

, (17)
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On plugging the above expression into (14) we obtain that the effective diffusion coefficient dependent
on the longitudinal local coordinate is given by,

Dtorus(θ) =
D0

w′(θ)

1
a
b + cos θ

{
arctan

[(a
b
+ cos θ

)(
y′0(θ) +

w′(θ)

2

)]

− arctan

[(a
b
+ cos θ

)(
y′0(θ)−

w′(θ)

2

)]}
. (18)

As an illustrative example of how particles diffuse in this surface, let us study a simple asymmetrical
conical channel made up by two straight lines ϕ2 = m2θ − ϕ0 and ϕ1 = m1θ + ϕ0. For this channel
the effective diffusion coefficient is as follows,

Dtorus(θ) =
D0

m1 −m2

1
a
b + cos θ

{
arctan

[
m1

(a
b
+ cos θ

)]
− arctan

[
m2

(a
b
+ cos θ

)]}
. (19)

In figure 2, we show a diagram of this channel and the effective diffusion coefficient is plotted.
We keep constant the upper slope m2, while varying the lower m1. As expected [22], the diffusion
coefficient increases with increasing radius.

Figure 2: An asymmetric channel formed by straight walls. The slope of the upper boundary is fixed at m2 = 1
and the lower one varies from −2 ≤ m1 ≤ 2. The effective diffusion coefficient is plotted at θ ≈ 0 We keep the
large radius fixed at a = 1, while the small radius takes values 0.01 6 b 6 1. The increase in the small radius is
shown with the change from red to blue hues.

Is worth noticing that the factor (17) can be rewritten in terms of the Gaussian curvature instead
of the angle. Although this gives no gain to simplify calculations, it helps us to see how the effective
diffusion coefficient is modified in terms of the curvature,√

g1(θ)

g2(θ)
=
b

a

(
1− b2K

)
, (20)
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Explicitly for (19) we have,

Dtorus(K) =
D0

m1 −m2

b

a

(
1− b2K

){
arctan

[
m1

(
a

b (1− b2K)

)]

− arctan

[
m2

(
a

b (1− b2K)

)]}
. (21)

Equation (21) gives us an insight of how the curvature of the manifold changes the dynamics of the
system and in particular, how it influences the effective diffusion in the confined geometry. Indeed we
can notice that, as the curvature varies −1/[b(a − b)] ≤ K ≤ 1/[b(a + b), the effective diffusion
coefficient changes.This dependence is shown on figure 3. From θ = 0 (fig. 2) to θ = π/2 (fig. 3(a)),
the effective diffusion coefficient decreases. From θ = π/2 to θ = π (fig. 3(b)) it grows and continues
growing till θ = 3π/2 (fig. 3(c)). From that point it begins to decrease again to θ = 2π (fig. 3(d)).

Figure 3: Effective diffusion coefficient for an asymmetric channel formed by straight walls with upper boundary
fixed at m2 = 1 and the lower one varying from −2 ≤ m1 ≤ 2. The large radius was fixed at a = 1, and the
small radius was chosen to vary 0.01 6 b 6 1. The increase in b is shown with the change from red to blue. We
plot the ratio Dtorus(θ)/D0 at different angles (a) θ = π/2, (b) θ = π, (c) θ = 3π/2 and θ = 2π.

4. Summary and conclusions
In this work we present the corresponding Fick-Jacobs equation for a two-dimensional narrow asym-
metric channel with varying width w(χ) and a non-straight midline y0(χ), embedded on a symmetric
curved surface. The effective diffusion coefficient that depends on the longitudinal local coordinate,
is given by Eq. 14), and was obtained by using the Kalinay and Percus’ projection method. For a flat
surface, this expression reduces to DP’s result for a general asymmetric channel given in Eq. (3), which
also contains all previous known results.

In particular we present an asymmetric conical channel embedded on torus’ surface. We recovered
the results obtained by DP with additional dependence of the effective diffusion coefficient on both,
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the radius a and b, and the angle θ. For the asymmetric conical channel, the diffusion coefficient for a
fixed slope, first decreases from 0 to π/2, then starts to increase up to the value θ = 3π/2, where it
begins to decrease again till 2π. Varying the small radius the effective diffusion coefficient decreases
as b increases as was already shown in [22] for the sphere. We also notice that in eq. (21) the effective
diffusion coefficient can be written in terms of the curvature of the surface.
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