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Abstract 
Many disordered systems can be modelled by percolation. Applications of this standard 
model range from amorphous and porous media to composites, branched polymers, gels 
and complex ionic conductors. In this brief review we give a short introduction to perco-
lation theory and describe applications in materials science. We start with the structural 
properties of percolation clusters and their substructures. Then we turn to their dynamical 
properties and discuss the way the laws of diffusion and conduction are modified on these 
structures. Finally, we review applications of the percolation concept for transport in 
various kinds of heterogeneous ionic conductors.  
 
 
1. The percolation transition 
 
Percolation represents a standard model for a structurally disordered system with a wide 
range of applications [1-3]. In Sections 1 to 3 we give a brief introduction into percola-
tion theory. For brevity, we skip references to most original works here and instead refer 
to reviews [1] and [2]. In Section 4 we discuss applications on heterogeneous ionic con-
ductors. 
 
Let us consider a square lattice, where each site is occupied randomly with probability p 
or is empty with probability 1  (see Fig. 1). Occupied and empty sites may stand for 
very different physical properties. For illustration, let us assume that the occupied sites 
are electrical conductors, the empty sites represent insulators, and that electrical current 
can only flow between nearest-neighbour conductor sites.  

− p

 
At low concentration p, the conductor sites are either isolated or form small clusters of 
nearest-neighbour sites. Two conductor sites belong to the same cluster if they are con-
nected by a path of nearest-neighbour conductor sites, and a current can flow between 
them. At low p values, the mixture is an insulator, since no conducting path connecting 
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opposite edges of our lattice exists. At large p values, on the other hand, many conducting 
paths between opposite edges exist, where electrical current can flow, and the mixture is 
a conductor. At some concentration in between, therefore, a threshold concentration pc 
must exist where for the first time an electrical current can percolate from one edge to the 
other. The threshold concentration is called the percolation threshold, or, since it sepa-
rates two different phases, the critical concentration.  
 

 
 
Fig. 1. Site percolation on the square lattice: The small circles represent the occupied sites for three 
different concentrations: p = 0.2, 0.59, and 0.8. Nearest-neighbour cluster sites are connected by 
lines representing the bonds. Filled circles are used for finite clusters, while open circles mark the 
large infinite cluster.  
 
If the occupied sites are superconductors and the empty sites are conductors, pc separates 
a normal-conducting phase below pc from a superconducting phase above pc. Another 
example is a mixture of ferromagnets and paramagnets, where the system changes at pc 
from a paramagnet to a ferromagnet.  
 
In contrast to the more common thermal phase transitions, where the transition between 
two phases occurs at a critical temperature, the percolation transition described here is a 
geometrical phase transition, which is characterized by the geometric features of large 
clusters in the neighbourhood of pc. At low values of p only small clusters of occupied 
sites exist. When the concentration p is increased the average size of the clusters in-
creases. At the critical concentration pc a large cluster appears which connects opposite 
edges of the lattice. We call this cluster the infinite cluster, since its size diverges in the 
thermodynamic limit. When p is increased further the density of the infinite cluster in-
creases, since more and more sites become part of it, and the average size of the finite 
clusters, which do not belong to the infinite cluster, decreases. At p = 1, trivially, all sites 
belong to the infinite cluster.  
 
The value of pc depends on the details of the lattice and increases, for fixed dimension d 
of the lattice, with decreasing coordination number z of the lattice. For the triangular 
lattice, z = 6 and pc = 1/2, for the square lattice, z = 4 and pc ≈ 0.592746, while the hon-
eycomb lattice has z = 3 and pc ≈ 0.6962. For fixed z, pc decreases if the dimension d is 

2



 

enhanced. In both the triangular lattice and the simple cubic lattice we have z = 6, but pc 
for the simple cubic lattice is considerably smaller, pc ≈ 0.3116. 
 
So far we have considered site percolation, where the sites of a lattice have been occupied 
randomly. When the sites are all occupied, but the bonds between them are randomly 
occupied with probability q, we speak of bond percolation. Two occupied bonds belong 
to the same cluster if they are connected by a path of occupied bonds. The critical con-
centration qc of bonds (qc = 1/2 in the square lattice and qc ≈ 0.2488 in the simple cubic 
lattice) separates a phase of finite clusters of bonds from a phase with an infinite cluster. 
Perhaps the most common example of bond percolation in physics is a random resistor 
network, where the metallic wires in a regular network are cut randomly with probability 
1 − q. Here qc separates a conductive phase at large q from an insulating phase at low q. 
A possible application of bond percolation in chemistry is the polymerization process, 
where small branching molecules can form large molecules by activating more and more 
bonds between them. If the activation probability q is above the critical concentration, a 
network of chemical bonds spanning the whole system can be formed, while below qc 
only macromolecules of finite size can be generated. This process is called a sol-gel tran-
sition. An example of this gelation process is the boiling of an egg, which at room tem-
perature is liquid and upon heating becomes a more solid-like gel.  
 
The most natural example of percolation is continuum percolation, where the positions of 
the two components of a random mixture are not restricted to the discrete sites of a regu-
lar lattice. As a simple example, consider a sheet of conductive material, with circular 
holes punched randomly in it. The relevant quantity now is the fraction p of remaining 
conductive material. Compared with site and bond percolation, the critical concentration 
is further decreased: pc ≈ 0.312 for d = 2, when all circles have the same radius. This 
picture can easily be generalized to three dimensions, where spherical voids are generated 
randomly in a cube, and pc ≈ 0.034. Due to its similarity to Swiss cheese, this model is 
also called the Swiss cheese model. Similar models, where also the size of the spheres 
can vary, are used to describe sandstone and other porous materials.  
 
 
2. The fractal structure of percolation clusters near pc 
 
The percolation transition is characterized by the geometrical properties of the clusters 
near pc [1,2]. The probability that a site belongs to the infinite cluster is zero below pc and 
increases above pc as 

( )βc~ ppP −∞
                (1) 

 
with β = 5/36 in d = 2 and β ≈ 0.417 in d = 3.  
 
The linear size of the finite clusters, below and above pc, is characterized by the correla-
tion length ξ. The correlation length is defined as the mean distance between two sites on 
the same finite cluster and represents the characteristic length scale in percolation. When 
p approaches pc, ξ increases as  
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            ,               (2)  ν||~ξ −− cpp
 
with the same exponent v below and above the threshold (v = 4/3 in d = 2 and v ≈ 0.875 
in d = 3). While pc depends explicitly on the type of the lattice, the critical exponents β 
and ν are universal and depend only on the dimension d of the lattice, but not on the type 
of the lattice.  
 
 

 
Fig. 2. Four successive magnifications of the incipient infinite cluster that forms at the percolation 
threshold on the square lattice. Three of the panels are magnifications of the center squares marked 
by black lines. An educational game is to time how long it takes each player to detect by eye which 
of the 24 possible orderings is the correct one that arranges the four panels in increasing order of 
magnification. 
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For percolation concentrations near pc and on length scales smaller than the correlation 
length ξ, both the infinite cluster and the finite clusters are self-similar. I.e., if we cut a 
small part out of a large cluster, magnify it to the original cluster size and compare it with 
the original, we cannot tell the difference: both look the same. This feature is illustrated 
in Fig. 2, where a large cluster at pc is shown in four different magnications. We leave it 
to the reader to find out what is the original and what are the magnifications.  
 
 

 
 
Fig. 3. The same as Fig. 2 except that now the system is slightly (0.3 %) above the percolation 
threshold and the panels are not scrambled. The upper left picture shows the original and the other 
pictures are magnifications of the center squares marked by black lines. The correlation length ξ  is 
approximately equal to the linear size of the third (lower left) picture. When comparing the two 
lower pictures, the self-similarity at small length scales below ξ  is easy to recognize.  
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As a consequence of the (non-trivial) self-similarity, the cluster is characterized by a 
“fractal” dimension, which is smaller than the dimension d of the embedding lattice. The 
mean mass of the cluster within a circle of radius r increases with r as  
 
    ,                              (3) ξ,~)( f <<rrrM d

 
with the fractal dimension df = 91/48 in d = 2 and df ≈ 2.5 in d = 3. Above pc on length 
scales larger than ξ the infinite cluster can be regarded as a homogeneous system which 
is composed of many cells of size ξ. Mathematically, this can be summarized as  
 

                        (4) 
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Fig. 3 shows a part of the infinite cluster slightly above pc (p = 1.003 pc) on different 
length scales. At large length scales ( , upper left) the cluster appears homogene-
ous, while on lower length scales ( , lower pictures) the cluster is self-similar.  

ξ>>r
ξ<<r

 
The fractal dimension df can be related to β and ν in the following way. Above pc, the 
mass M∞ of the infinite cluster in a large lattice of size Ld is proportional to Ld P∞. On the 
other hand, this mass is also proportional to the number of unit cells of size ξ, (L/ξ)d, 
multiplied by the mass of each cell, which is proportional to . This yields (with Eqs. 
(1) and (2))  

fξd

 
( ) ( ) ( ) ( ),~ξξ/~~~ ff ν

c
β

c
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∞∞ −−            (5) 
 
and hence, comparing the exponents of )( cpp − ,  
 

.
ν
β

f −= dd                              (6) 

 
Since β and ν are universal exponents, df is also universal. 
 
A fractal percolation cluster is composed of several fractal substructures, which are de-
scribed by other exponents [1,2]. Imagine applying a voltage between two sites at oppo-
site edges of a metallic percolation cluster: The backbone of the cluster consists of those 
sites (or bonds) which carry the electric current. The topological distance between both 
points (also called chemical distance) is the length of the shortest path on the cluster 
connecting them. The dangling ends are those parts of the cluster which carry no current 
and are connected to the backbone by a single site only. The red bonds (or singly con-
nected bonds), finally, are those bonds that carry the total current; when they are cut the 
current flow stops.  
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The fractal dimension dB of the backbone (dB BB ≈ 1.64 in d =2 and dB ≈ 1.86 in d = 3) is 
smaller than the fractal dimension d

B

f of the cluster, reflecting the fact that most of the 
mass of the cluster is concentrated in the dangling ends. On the average, the topological 
length    of the path between two points on the cluster increases with the Euclidean dis-
tance r between them as  (d

A
min~ drA min ≈ 1.13 in d = 2 and dmin ≈ 1.37 in d = 3). The frac-

tal dimension of the red bonds dred can be deduced from exact analytical arguments: The 
mean number of red bonds varies with p as , and the fractal di-
mension of the red bonds is therefore d

ν/11
cred ξ~)(~ −− ppn

red = 1/ν.  
 
It is important for applications that close to the percolation threshold, the exponents are 
universal and depend neither on the structural details of the lattice (e.g., square or trian-
gular) nor on the type of percolation (site, bond, or continuum), but only on the dimen-
sion of the lattice.  
 
 
3. Anomalous Diffusion and Conduction on Percolation Clusters 
  
Next we will focus on the dynamical properties of percolation systems, where to each site 
or bond a physical property such as conductivity is assigned. Due to the fractal nature of 
the percolation clusters near pc, the physical laws of dynamics are changed essentially 
and become anomalous. We start with the infinite percolation cluster at the critical con-
centration pc.  
 
The cluster has loops and dangling ends, and both substructures slow down the motion of 
a random walker. Due to self-similarity, loops and dangling ends occur on all length 
scales, and therefore the motion of the random walker is slowed down on all length 
scales. The time t the walker needs to travel a distance R is no longer, as in regular sys-
tems, proportional to R2, but scales as , where  is the fractal dimension of 
the random walk [1, 2]. For the mean square displacement this yields immediately  

w~ dRt 2w >d

 
w2 /2 ( ) ~ .dr t t< >                       (7) 

 
The fractal dimension dw is approximately equal to 3df /2 [4]. For continuum percolation  
in d = 3, dw is enhanced: dw ≈ 4.2 [5]. In general, dw cannot be calculated rigorously. 
Exceptions are linear fractal structures (like self-avoiding walks), where dw = 2df, or 
loopless structures. Diffusion processes described by Eq. (7) are generally referred to as 
anomalous diffusion.  
 
Above pc, fractal structures occur only within the correlation length ξ.(p). Thus the 
anomalous diffusion law, Eq. (7), occurs only below the corresponding crossover time 

, which decreases proportional to , if p is further increased. Above 
, on large time scales, the random walker explores large length scales where the cluster 

is homogeneous, and  follows Fick's law increasing linearly with time t. Thus,  

wξ~ξ
dt wν

c )( dpp −−
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7



 

 

( )
⎪⎩

⎪
⎨
⎧

>>
<<

><
.tif
,tif

~
ξ

ξ
/2

2
w

tt
tt

tr
d

             (8) 

 
The diffusion coefficient defined by 2 ( ) 2D r t d= < > t  is (approximately) related to the 
dc conductivity σdc by the Nernst-Einstein equation,  
 

,/σ B
2

dc TkDne=              (9) 
 
where n is the density and e the charge of the diffusing particles. Below pc, there is no 
current between opposite edges of the system, and σdc = 0. Above pc, σdc increases by a 
power law  

( ) ,~σ μ
cdc pp −              (10) 

 
where the critical exponent μ is (semi)-universal. For percolation on a lattice, μ depends 
only on d. For continuum percolation (Swiss cheese model) in d = 3, however, μ is en-
hanced: μ ≈ 2.38. 
 
Combining Eqs. (9) and (10), we can obtain the behaviour of the diffusion coefficient D 
as a function of p − pc. Since only the particles on the infinite cluster contribute to the dc 
conductivity, we have (from Eq. (1))  n ~ P∞ ~ (p − pc)β in Eq. (9). This yields D ~ (p − 
pc)μ − β. Next we use scaling arguments to relate the exponent μ to dw. Above tξ, the mean 
square displacement < r2(t) > behaves as < r2(t) > ~ (p − pc)μ − β t, where, for t = tξ, we 
have < r2(t) > ~ ξ2. On the other hand we know that for times below tξ on distances r < 
tξ

1/dw, < r2(t) > ~ tξ
2/dw. Equating both relations we obtain immediately (p − pc)μ − β tξ ~ 

tξ
2/dw. Using tξ  ∼ ξdw ~ (p − pc)−νdw (from Eq. (2)) we get the relation between μ and dw, 

 
( ) .ν/βμ2w −+=d             (11) 

  
 
4. Application of the Percolation Concept: Heterogeneous Ionic Conductors  
  
Let us now turn to applications of percolation models in materials. A substantial amount 
of research has concentrated on “dispersed ionic conductors” after the discovery by Liang 
[6] that insulating fine particles with sizes of the order of 1μm, dispersed in a conductive 
medium (e. g. Al2O3 in LiI), can lead to a conductivity enhancement [7]. This effect has 
been found to arise from the formation of a defective, highly conducting layer following 
the boundaries between the conducting and the insulating phase [8]. Effectively, the sys-
tem thus contains three phases. Theoretical studies therefore have focused on suitable 
three-component impedance network models.  
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Fig. 4. Illustration of the three-component percolation model for dispersed ionic conductors, for 
different concentrations p of the insulating material. The insulator is represented by the grey area, 
the ionic conductor by the white area. The bonds can be highly conducting bonds (A bonds, bold 
lines), normal conducting bonds (B bonds, thin lines), or insulating (C bonds, dashed lines). (a) 

, (b) , (c) , and (d) . 
c'pp < c'pp = c''pp = c''pp >

 
4.1 Correlated Bond Percolation Model for Dispersed Ionic Conductors 
 
Figure 4 shows a two-dimensional illustration of such composites in a discretized model 
[9,10]. In its simplest version this model is constructed by randomly selecting a fraction p 
of elementary squares on a square lattice, which represent the insulating phase (grey), 
while the remaining squares are the conducting phase (white). The distribution of both 
phases leads to a correlated bond percolation model with three types of bonds and associ-
ated bond conductances σα; α = A, B, C; as defined in Fig. 4. For example, bonds in the 
boundary between conducting and insulating phases correspond to the highly conducting 
component (A bonds). This is an extension to the standard bond percolation model, 
where only two kinds of bonds (e.g., conducting and insulating bonds, σA = 1, σB = 0) are 
considered. The analogous construction for three dimensions is obvious.  
 
Clearly, the experimental situation described above requires 0σ;1τσ/σ CBA =>>= . It is 
natural to assume that σA and σB are thermally activated, such that their ratio τ ∼ 

 increases with decreasing temperature. 
B

)/exp( BTkEΔ−
 
A remarkable feature of this model is the existence of two threshold concentrations. At 

, interface percolation (i.e., percolation of A bonds) sets in, whereas at 
 (normally not accessible by experiment) the system undergoes a con-

ductor-insulator transition. The first critical concentration 

c'pp =

cc '1'' ppp −==

097.0'c =p  corresponds to the 
threshold for third-neighbour site percolation on a 3-dimensional lattice. 
 
Figure 5 shows the total conductivity obtained by Monte Carlo simulations [9,10], for 
three different temperatures (corresponding to τ = 10, 30 and 100). Good agreement with 
the experimental curves [11] is achieved, which show a broad maximum in the conduc-
tivity as a function of p in the range between the two thresholds. We like to note that the 
model also describes successfully the variation of the total conductivity with the size of 
the dispersed particles [12]. In particular, it was found that as the particle size decreases 
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while the thickness of the highly conducting interfacial layer is fixed, the maximum in 
the total conductivity as a function of the insulator concentration p shifts to smaller val-
ues of p. The observation of conductivity maxima at very low volume fractions close to 
0.1 in certain composite electrolytes, however, was interpreted recently by a grain bound-
ary mechanism within the bulk of the electrolyte phase [13].  
 

 
 
Fig. 5. (a) Normalized conductivity of the LiI-Al2O3 system as a function of the mole fraction p of 
Al2O3 at different temperatures (after [11]). (b) Normalized conductivity resulting from Monte 
Carlo simulations of the three-component percolation model, as a function of p, for  
(circles), 30 (full squares), and 100 (triangles) (after [10]). 

10σ/σ 0
B

0
A =

 
 
4.2 Composite Micro- and Nanocrystalline Conductors  
 
In the foregoing subsection, we have discussed dispersed ionic conductors that were 
prepared by melting the ionic conductor and adding the insulator (mainly Al2O3) to it. 
Next we consider diphase micro- and nanocrystalline materials, which were prepared by 
mixing the two different powders and pressing them together to a pellet. This way, in 
contrast to the classic dispersed ionic conductors discussed above, the grain size of both 
ionic conductor and insulator can be varied over several orders of magnitude. For reviews 
on nanocrystalline materials see, e.g., [13-16].  
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Fig. 6. Plot of the dc conductivity of microcrystalline (full circles) and nanocrystalline 
(1-x)Li2O:xBB2O3 composites (open circles) vs volume fraction p (bottom scale) and mole fraction x 
(top scale) of insulating B2O3, at T = 433 K. The arrows indicate the compositions where the dc 
conductivities fall below the detection limit. The dashed lines show the dc conductivities obtained 
from the continuum percolation model discussed in the text (after [18]).  

 

Figure 6 shows the ionic conductivity of micro- and nanocrystalline (1-x)Li2O:xBB2O3 
composites for different contents x of insulator B2O3 [17,18]. For pure Li2O, i.e. x = p = 
0, the dc conductivity of the microcrystalline and the nanocrystalline samples coincide. 
When Li2O is successively substituted by B2O3, the two systems behave very different. In 
the microcrystalline samples, the dc conductivity decreases monotonically with x, while 
in the nanocrystalline samples, the dc conductivity first increases and reaches a maximum 
near x = 0.6, where the conductivity is about one order of magnitude larger than that of 
pure Li2O. Further increase of the insulator content leads to a decrease of the conductiv-
ity. At x = 0.95, finally, the conductivity has dropped below the detection limit. As for the 
composites discussed above, the overall behaviour (including the differences between 
nano- and microcrystalline samples) can be explained assuming an enhanced conductivity 
at the interfaces between unlike grains. Even more remarkable than the increase of the dc 
conductivity with increasing insulator content, however, is the fact that, starting from the 
pure insulator B2B O3, only a tiny volume fraction of C is needed to obtain a dc conductiv-
ity which is considerably higher than the dc conductivity of pure Li2O. 
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Fig. 7. Continuum percolation model with insulating spheres (radius R) dispersed in an ionic con-
ductor and a highly conducting interface, after [20]. The figures show the two critical insulator 
contents where (a) an infinite highly conducting pathway is formed and (b) this pathway is dis-
rupted.  
 
 
4.3 Continuum percolation model  
 
The increase of the ionic conductivity at intermediate insulator contents for the nano-
crystalline composites clearly shows that the interfaces between the two components are 
responsible for the conductivity enhancement. To describe the dependence of the dc con-
ductivity of the composites on the insulator content p, we first consider a continuum 
percolation model [19,20], which is sketched in Fig. 7. The insulating particles are repre-
sented by spheres with radius R. Around these insulating particles a highly conducting 
interface with width λ and ionic conductivity σA is created. The remaining volume repre-
sents the ionically conducting phase which has a conductivity σB. An enhancement factor 
τ = σ

B

A/σBB of 100 and an interface thickness λ = 1 nm are assumed. The grain radii R have 
been determined by transmission electron microscopy and X-ray diffraction [21,22] and 
are roughly 5 µm for the microcrystalline composites and 10 nm for the nanocrystalline 
composites. The overall conductivity of the system, calculated by an effective medium 
approximation [17], is shown in Fig. 6 (dashed curves). A good overall agreement with 
the experimental data is found. However, the effective coordination numbers z used in 
this approach as fit parameters to reproduce the experimental results (z = 7 for the micro-
system and z = 59 for the nanosystem) can hardly be rationalized.  
 

4.4 Brick-layer type percolation model  

 
In an attempt to understand the experimental results on a more microscopic basis, we 
next consider a brick-layer type model where both, micro- and nanocrystalline compos-
ites are treated on the same footing [23]. In the model, one starts with a cubic box of size 
L3 that is divided into a large number of small cubes with equal volumes a3. Each of the 
small cubes is regarded as a grain of the composite. With a given probability p the cubes 
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are supposed to be insulating B2O3 grains. Thus the volume fraction of the Li2O grains is 
1 − p. By definition, conducting grains are connected when they have one corner in com-
mon. Fig. 8(a) shows the largest cluster of Li2O grains that connects opposite faces of the 
large box close to the percolation threshold, at p = 0.9. Again a highly conducting inter-
face of width λ between insulating and ionically conducting particles is assumed. Next 
the small cubes in Fig. 8(a), that represent the Li2O grains, are replaced by a bond lattice 
sketched in Fig. 8(b). The bonds represent the ionic conduction (i) inside the grain (Σ0), 
(ii) along the interface area (Σ1) and (iii) along the interface edges (Σ2). The length of 
each bond is a/2. The cross section each bond represents is (a - λ)2 for the Σ0 bonds, (a - 
λ)λ for the Σ1 bonds and λ2 for the Σ2 bonds. Having this in mind, the conductance of 
each bond can be calculated easily. It is assumed that (i) in the bulk of the insulating 
BB2O3 grains, the specific conductivity is zero, that (ii) in the bulk of the conducting Li2O 
grains as well as in the interfaces between them, the specific conductivity is σBB, and that 
(iii) Li2O grains in contact with a B2O3 grain share a highly conducting interface with 
specific conductivity σA = τσB. The enhancement factor τ is assumed to be of the order of 
10  - 10 .  

B

2 3

 
Finally, for calculating the total conductivity of the composite the problem is mapped 
onto the corresponding diffusion problem by defining appropriate jump rates (propor-
tional to the bond conductances) along the bonds. For given values of τ, a, λ and p, the 
mean square displacement  of many random walks is then determined as a 
function of time t on the largest cluster of each model system. Averaging over all of 
them, one obtains the diffusion coefficient , which is propor-
tional to the dc conductivity (cf. Eq. (9)). 

>< )(2 tr

ttrD t 6/)(lim 2 ><= ∞→

 

 
 
Fig. 8. (a) The largest cluster of insulating particles for the brick-layer type model in three dimen-
sions at the critical concentration. (b) A single grain and the bonds assigned to conduction in the 
interior of the grains, along the sides and along the edges of the grain, after [23].  
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The numerical results for the dc conductivity vs. insulator volume content p are shown in 
Fig. 9 for various grain sizes a and enhancement factors τ. In all model calculations, a 
fixed interface thickness λ = 1 nm was assumed. The figure shows that this microscopic 
model, which treats nano- and microcrystalline samples in exactly the same way (the only 
difference is the size of the grains) is able to reproduce all qualitative features of the ex-
perimental results. One feature cannot be reproduced by the model, however, namely the 
very high insulator concentration where the conductivity drops to zero. We will come 
back to this point at the end of the next section.  
 

 
Fig. 9. Numerical results of the normalized dc conductivity σ(p)/σ(0) vs. insulator volume fraction 
p in the brick-layer type percolation model for different grain sizes a and enhancement factors τ = 
σA /σB. In all cases the interface thickness λ = 1nm is fixed. Nanocrystalline grains: Δ  a = 10 nm, τ 
= 200; □  a = 10 nm, τ = 100; ‘  a = 20 nm, τ = 200; Ï  a = 20 nm, τ = 100; Microcrystalline 
grains: ●  a = 10 µm, τ = 200; ■  a = 10 µm, τ = 100; ♦  a = 20 µm, t = 200; ▼  a = 20 µm, τ = 100 
(after [23]).  

B

 
4.5 Voronoi construction  
 
To get a more realistic structure of the composites in the model description (compared to 
the over-simplified cubic arrangement) a Voronoi approach [24] has been used, see Fig. 
10 for a two-dimensional sketch [18]. 2000 seeds which represent the centers of the 
grains have been  
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Fig. 10. Polycrystalline composite material created by Voronoi construction in two dimensions. 
Dark grey areas represent the ionic conductor grains and light grey areas represent the insulator 
grains, after [18].  
 
placed randomly inside a volume of 1503 lattice sites. The borders of the grains are de-
fined by the planes perpendicular to the connection line between two neighboured seeds 
intersecting this line exactly in the middle between both seeds. By this a fully compacted 
structure of irregular polyhedra is created. The shapes of the individual grains differ sig-
nificantly and thus the number of edges of a crystallite does also change which results in 
a locally varying coordination number. Furthermore the particles are not mono-disperse 
but show a distribution of grain sizes. The distribution of the local coordination numbers 
of the Voronoi system is a Gaussian, with an average coordination number close to 15.6 
and a standard deviation close to 4.4. The grain volumes follow a log-normal distribution, 
in agreement with the experimental situation. 
 
The structure created by the Voronoi construction seems to represent quite nicely a real 
polycrystalline material (though pores are not included). The cells in Fig. 10 can now be 
regarded as insulating with probability p and as ionically conducting with probability (1 - 
p), irrespective of their size.  
 
It is clear that the dc conductivity will show a similar behaviour as in the two models 
before. The main question that arises is whether the more realistic Voronoi construction 
is able to describe the conductivity close to p = 1 in a better manner than the previous 
models. To this end, the percolation probability P(p) for ionically conducting particles to 
percolate the system was determined. The result is shown in Fig. 11. One can see that the 
critical concentration pc above which the conducting paths get disrupted is close to 0.86, 
being even smaller than the value which was obtained for the brick-layer model in the 
foregoing section.  
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A reason for this underestimation of pc might be that Li ion transport is also possible in 
the interface between insulating nanocrystalline grains, representing an additional Li 
diffusion passageway of nanometer length. Indeed, the percolation threshold increases to 
about 0.93 (see Fig. 11) if B2O3/B2O3 interfaces are considered to be permeable for Li 
ions (thus linking two nondirectly connected Li2O grains) if the length of these interfaces 
is smaller than the average particle diameter. In the brick-layer model, the assumption of 
such a ‘nanometer-passageway diffusion’ yields a threshold close to 0.95 [23].  
 

 
 Fig. 11. The percolation probability P(p) of the ionically conducting particles vs. insulator volume 
fraction p in the three-dimensional Voronoi system shown as white circles. The black squares 
represent the case where Li ions can pass along BB2O3/B2O3 interfaces being shorter than the aver-
age grain diameter, after [18].  
 
 
We gratefully acknowledge very valuable discussions with Wolfgang Dieterich, Joachim 
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