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1. Introduction 
Lyotropic liquid crystal materials consist of 

self-assembled ordered structures of amphiphilic 
molecules in the presence of a solvent [1]. 
Typically the samples consist of a powder 
distribution of director orientations, but certain 
mesophases (i.e., hexagonal and lamellar) may 
be macroscopically aligned with external fields 
such as mechanical or magnetic [2; 3]. 
Polymerised lyotropic liquid crystal phases can 
be made using, for example, polymerisable 
surfactants (e.g., Ref. [4]). These materials are 
attractive for applications like anisotropic ion 
conductors, templating nanoporous materials and nanoparticles, drug delivery systems, 
nanofiltration membranes, gas separation membranes and selective vapour barriers [5]. 

As most of these applications involve the transport of molecules, studying the 
diffusion of molecules in these environments is important. Pulsed gradient spin-echo 
(PGSE) NMR is a non-invasive technique that is well suited to measuring self-diffusion 
[6]. Self-diffusion in a lyotropic liquid crystal system is well documented (e.g., Refs. [6-
8]). Self-diffusion in hexagonal phases has been simulated using Cellular Automata with 
fixed cylinder radii  and a large number of diffusing molecules; and agrees well with 
PGSE NMR results [9; 10]. Here we have used simple simulations of single molecule 
random walks in hexagonal arrays of cylinders (Fig. 1) to predict the diffusion ellipsoids 
for these systems for comparison with experimental results. We are particularly interested 
in simulating the self-diffusion and effects of imperfections and fluctuations (e.g., radii 
and position) in macroscopically aligned hexagonal phases with uniaxial 
compression/tension and comparing this to the experimentally measured self-diffusion; 
which is not only pertinent for some of the above applications, but also for potentially 
new applications of these materials. 

2. Model and Simulations
Briefly, the cylinders are assumed to be reflecting and impenetrable with fixed 

positions. Cylinder radii are random within a given tolerance or have a fixed value. The 
particle radius is simply added to the cylinder radius. The step size is chosen to be much 

Fig. 1: A simulated random walk 
(green line) of a particle in the spaces 
around reflecting cylinders in a 
hexagonal array. 
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smaller than the cylinder radius/separation. 
The number of steps is chosen based on the 
desired overall mean squared displacement 
(MSD). The MSD is calculated for each 
step in the walk and this is averaged for a 
large number of walks (Fig. 2). For 
compression, the array is altered 
accordingly with or without cylinder 
compression. The resulting MSD’s are 
compared to the experimental diffusion 
ellipsoids. Undulations in the cylinder axes 
may be account for by averaging the results 
over the undulations. 

3.  Conclusion
The simulated results for the 

uncompressed hexagonal phase match well 
with the experimental diffusion ellipsoids 
measured with PGSE NMR. These types of 

simulations may be useful for studying the effects of compression on macroscopically 
aligned hexagonal phase materials. For such cases the orientation of the array before 
compression may also need to be averaged in the simulations, while for simulations of 
uncompressed phases the array orientation has little effect on the x and y MSD. These 
simulations may be altered to include other boundary conditions (such as surface binding 
and permeability), undulations along the cylinder axis and random variation in position 
within a tolerance. 
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Fig. 2: MSD of a particle diffusing in a 
hexagonal array of reflecting cylinders with 
no compression. DParticle = 2.792 × 10-10 
m2s-1, max step size ± 0.1 nm, total steps = 
16720 repeated 10000 times, hexagonal 
lattice parameter = 5.77 nm, cylinder radius 
= 1.35 nm with a random variation of up to 
–15%, particle radius = 0.14 nm, z-axis is 
parallel to the cylinder axes. The x MSD is 
overlapping the y MSD in the figure. 
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