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Abstract

Diffusion Weighted Magnetic Resonance (DWMR) Imaging is an important tool in
diagnostic neuroimaging, but the biophysical basis of the DWMR signal from bio-
logical tissue is not entirely understood. Testable, theoretical models relating the
DWMR signal to the tissue, therefore, are crucial. This work presents a toy version
of such a model of water DWMR signals in brain grey matter. The model is based
on biophysical characteristics and all model parameters are directly interpretable
as biophysical properties such as diffusion coefficients and membrane permeability
allowing comparison to known values. In the model, a computer generated Diffu-
sion Limited Aggregation (DLA) cluster is used to describe the collected membrane
morphology of the cells in cortical grey matter. Using credible values for all model
parameters model output is compared to experimental DWMR data from normal
human grey matter and it is found that this model does reproduce the observed
signal. The model is then used for simulating the effect on the DWMR signal of
cellular events known to occur in ischemia. These simulations show that a combi-
nation of effects is necessary to reproduce the signal changes observed in ischemic
tissue and demonstrate that the model has potential for interpreting DWMR sig-
nal origins and tissue changes in ischemia. Further studies are required to validate
these results and compare them with other modeling approaches. With such mod-
els, it is anticipated that sensitivity and specificity of DWMR in tissues can be
improved, leading to better understanding of the origins of MR signals in biological
tissues, and improved diagnostic capability.
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1 Introduction

Diffusion Weighted (DW) Magnetic Resonance Imaging (MRI) is sensitive to the
displacement of water molecules in biological tissue and can provide a measure of
the Apparent Diffusion Coefficient (ADC) in the tissue. Moseley et al. observed
a decrease in ADC by as much as 50% in ischemic brains minutes after induced
stroke, demonstrating that DW MRI has the potential to improve the clinical util-
ity of MRI [1]. Several studies have confirmed this observation and the ADC has
become a standard clinical marker for the detection of acute cerebral ischemia.
Diffusion weighted imaging lesions were originally ascribed to severe energy failure
with irreversible cellular damage. Growing evidence suggests, however, that ADC
lesions are reversible with early recanalization [2]. In order to improve the diag-
nostic strength of DW MRI and hence provide better estimations of salvageable
tissue, a detailed understanding of the metabolic and biophysical mechanisms un-
derlying the gradual drop in ADC immediately after ischemia onset [3] is needed.
These mechanisms have been studied in vivo and in vitro but the DWMR sig-
nal from normal and ischemic tissue remains to be fully understood. Forming a
complete understanding of MR signals in whole tissues, requires an understanding
of MR signals at the microscopic scale. The limited signal-to-noise ratio (SNR)
in MRI has, however, limited spatial resolution on clinical systems to the macro-
scopic level. Studies have nonetheless examined isolated living single cells showing
intracellular heterogeneity and signal changes with perturbations [4–6] providing
indicators for the development of realistic models. Vertebrate neural cells in living
tissues, however, have so far been beyond direct observation by MRI just as direct
observations of MR signals in the extracellular environment. We therefore develop
mathematical models of the MR signals in these tissues and test them on macro-
scopic, real data. The successfulness of a model will then depend on its predictive
ability under perturbations, and its ability to indicate the underlying mechanisms
causing signal changes that in turn will aid in therapeutic decisions. Several groups
have now developed mathematical models of diffusion signals in tissues and tested
them either on physical model systems or real tissues. Some early studies in this
area are [7–9], while more recent contributions are found in [10–12].

In a previous modeling study we hypothesized that numerical models with ge-
ometries closer to the actual morphologies in tissues could add to our understand-
ing of the biophysical origin of DW signal characteristics [13]. In the present study
we present the results produced by a simplistic implementation of such a model
design. The model provides a framework for simulating the biophysical events
associated with ischemia and their influence on the DWMR signal and ADC. This
model is based on real biophysical characteristics, and all model parameters are
directly interpretable as biophysical quantities allowing direct comparison with
known values. The model takes into account tissue geometry, intra- and extra-
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cellular diffusivity, membrane permeability, diffusion time (∆), encoding gradient
duration (δ) and strength (g). Tissue geometry is modeled by using a computer
generated Diffusion Limited Aggregation (DLA) clusters to describe grey matter
complexity. This is implemented by using a single DLA cluster to define the bor-
der between the extra- and intra-cellular spaces (ECS and ICS, respectively) with
the extra-cellular space being represented by the interior of the DLA cluster. The
relevance of DLA clusters in modeling grey matter structure is two-fold. Firstly,
the nerve cells of the brain are similar in shape to the DLA archetype. This mor-
phological similarity has been quantified by comparing the fractal dimension of
neuron profiles and typical DLA clusters in [14] where the fractal dimension of
typical neurons (2D projection) is reported to be 1.68 ± 0.15 coinciding with the
value of 1.70± 0.10 for typical DLA clusters. Secondly, this resemblance has been
ascribed to a similarity of growth mechanisms [15], indicating that all cell growth in
the central nervous system contains a DLA component. This is further supported
by the similar morphologies [16] of the predominant two cell types in grey matter:
neurons and glial cells. These results from quantitative cellular morphometry in-
dicate that a fractal geometry produced by a DLA growth mechanism is suitable
for modeling grey matter tissue complexity. We exploit this in our model by using
DLA clusters to mimic cell membrane structure for all grey matter cell types (not
individual cells) in a unit cell approach. The DLA cluster based model is capable
of reproducing the DWMR signal from normal grey matter using credible values
for intra- and extra-cellular diffusion coefficients and membrane permeability. We
demonstrate this on DWMR data obtained from normal human grey matter. We
present also simulations investigating the potential signal change produced by tis-
sue perturbations known to occur in the cytotoxic and vasogenic phase of ischemic
stroke on the ADC.

2 Materials and Methods

2.1 Modeling

The model calculates the Pulsed Gradient Spin Echo (PGSE) signal from any
two-dimensional, two-compartment system with independent diffusion properties
for each compartment. The gradient duration δ, diffusion time ∆ and gradient
strength g are included as model variables. At the start of simulations the spin
populations are randomly distributed in their native spaces. Intra- and extracel-
lular spin densities are variable, but set equal in all presented simulations. The
diffusion process is simulated as a discrete time random walk where the position of
each spin is updated at every time step δt = 10µs. The step size in a compartment
is calculated from the diffusion coefficient assigned to that compartment at simu-
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lation setup. Spins diffuse during the entire time course of simulations, also during
the application of the encoding gradients. The phase ϕ of each spin is updated at
every time step according to the spin position and the gradient strength at that
point in time and space. The outer walls of the model space are reflecting to avoid
unphysical spin trajectories and phase evolutions. At the end of the simulation,
the total signal is calculated as:

S = 〈exp(iϕ)〉 (1)

where 〈〉 denotes the population average. In the simulations of diffusion in tissue
the two compartments are separated by a fixed membrane described by the DLA
cluster border. Water exchange across the membrane is implemented so that only
spins which encounter the membrane along their diffusion path are given a prob-
ability of exchanging across the membrane. Exchange is implemented using two
transition probabilities to simulate a finite membrane permeability. The perme-
ability Pd is related to the transition probability for exchange from compartment
n to compartment m, pn−m via the following relationship [17]:

pn−m =
Pd

Dn

∆rn (2)

where Dn is the diffusion coefficient in compartment n, and ∆rn is the simulation
step length in compartment n. Two transition probabilities are therefore needed
to ensure identical membrane permeability on both sides of the membrane. The
resulting model exchange mechanism is directly comparable to passive exchange
across the membrane.

2.1.1 Test simulations

The model can simulate diffusion in any 2D two-compartment system, regardless
of geometry and distribution of the compartments. This allows simulation testing
on geometries that produce signal attenuations, E, with known analytical solutions
before turning to simulations of grey matter tissues. One such geometry is square
boundaries of side length a, where, in the short pulse approximation (δ � ∆), the
short and long time-scale limits are [18]:

Short time-scale limit :
E(q) = exp(−4π2q2D∆) (3)

Long time-scale limit :

E(q) =
2{1− cos(2πqa)}

(2πqa)2
(4)

where q is the norm of the reciprocal displacement vector q defined as [18]: q =
γδg/2π, where g is the diffusion encoding gradient. The simulations of diffusion
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Figure 1: The q-space test of the model using a square geometry with reflecting
boundaries. The simulated signal attenuation is plotted for several diffusion times
along with the exact behavior in the long time scale. All the q-space simulations
were performed using a gradient duration of δ = 1µs.

within a square geometry with impermeable boundaries can be seen in Fig. 1
which shows echo attenuation E(q) as a function of q-value multiplied by the side
length a of the confining space. Model output in the long and short time limits
are in agreement with theory; only the theoretical long time limit is included in
Fig. 1. The simulations show that uncertainties increase with q-value due to the
lower statistical weight of short diffusion trajectories. This is the reason for the
deviation of the long time limit simulation for qa larger than ∼0.8.

2.1.2 DLA cluster generation

All presented DLA clusters were generated using standard computational methods
as described elsewhere [19, 20]. In short, the DLA growth algorithm generates the
clusters by letting particles perform random walks on a discreet lattice until they
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encounter a fixed seed point placed in the center of the lattice. Upon contact
the diffusing particles stick irreversibly to this seed which then grows in size and
eventually becomes the DLA cluster. The growth algorithm terminates when the
DLA cluster reaches the desired size. More details about DLA clusters and diffu-
sion on fractals are given in [20, 21]. The DLA clusters produced by the algorithm
described above are used in the simulations of the DWMR signal from grey matter.

2.1.3 DLA based description of normal grey matter

In normal grey matter the intracellular space (ICS) is by far the largest portion
of the tissue (80% in grey matter, see below). In preparing our DLA based model
of grey matter we found no method for growing DLA clusters to this density in
the plane. In the modeling presented here we have therefore defined a 2D grey
matter unit cell in which a single DLA cluster defines the membrane separating
ICS and ECS. In this manner the ECS is represented by the interior of the DLA
cluster and the surrounding space represents the collected intra-cellular spaces in
grey matter. We believe that this approach is justified because a diffusing particle
inside a DLA cluster would experience restriction between the rough borders of the
DLA cluster as if this restriction was produced by two closely packed neighboring
DLA clusters. That is to say as if it were diffusing in the extracellular space in the
gap between two cells. In the same manner a diffusing particle outside the DLA
cluster in the proximity of the border would experience the same restriction as it
would were it on the inside of the DLA cluster. This is illustrated in Fig. 2 using
visualizations of simulation diffusion paths in and around a DLA structure. We
believe that this simple unit cell captures the grey matter properties that influence
the DWMR signal the most. This claim is substantiated in the following section.

2.1.4 The properties of the DLA based unit cell compared to real cor-
tical grey matter tissue

Grey matter volume fractions are known from histology [22] and the model uses
these established values in all simulations of normal tissue: ECS = 20%, ICS
= 80%. The range of restriction lengths present in the unit cell is similar to
the typical lengths in grey matter with the finest details in the unit cell being
1×1 µm. This corresponds to the typical grey matter cell process diameter on the
order of 1 µm [23]. Glial cells are estimated to be 10–50 times more numerous than
neurons [24] and occupy roughly half the volume of the central nervous system [25].
Hence they contribute a significant portion of the ICS [26] and should be taken
into account when modeling grey matter. The model ICS is meant to mimic the
collected ICS of both glial cells and neurons. The most numerous type of glia is
the astrocytes [24] and have roughly star shaped morphology comparable to the
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Figure 2: A: An example of a DLA cluster grown using the method described in
section 2.1.2. B: Enhanced view showing diffusion trajectories in the interior of
the DLA cluster. C: Diffusion paths on the inside and outside of the DLA cluster
are restricted by the DLA based ’membrane’. Starting positions are marked in
green (red) for particles outside (inside) the DLA cluster.

neuron [16]. The astrocytes are connected to each other by gap junctions [26] and
some evidence suggests that glial-neuron gap junctions exist [27].

Gap junctions also link neurons [24]. These membrane pores allow the passage
of water and other small molecules from cell to cell and thus the ICS functions as a
large fluid volume which is continuous over several typical cell sizes [26]. In agree-
ment with this, the model mimics grey matter as composed of two open, but highly
tortuous, spaces (i.e. ECS and ICS). The semi-permeable border representing the
membranes in the tissue is the source of restriction. With the applied diffusion
times, diffusion is highly restricted in the model geometry giving rise to diffusion
properties different from free diffusion. This geometrical representation of grey
matter is simple while capturing some overall properties of grey matter such as
volume fractions and typical restriction lengths. The side length of the unit cell
is 300 µm, which is well below typical scanner pixel size of ∼2 mm. Our unit
cell approach is further illustrated in Fig. 3 which describes the rationale behind
using a DLA cluster to describe collected membrane morphology in grey matter
tissue. In this representation the geometry in Fig. 3C should be thought of as a
descriptive grey matter unit cell.

2.1.5 Simulating normal grey matter tissue

In the simulations of normal grey matter we limited the diffusion parameters to
fixed ranges (DECS = 3.0–3.4 · 10−3 mm/s, DICS = 0.57–0.62 · 10−3 mm/s) with
both ranges centered around experimentally obtained estimates (see discussion).
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Figure 3: A schematic of the grey matter unit cell used in this work. A) A simplified
view of grey matter: cells in grey, membrane in black and extracellular space in
white. The box captures the overall structure of the tissue. B) The contents of
the red box with inverted contrast. The outline of the ECS is given by the surface
of the cell membranes. In the same manner we use the complex DLA morphology
to mimic the surfaces (membranes) of many cells by using it to define the border
between intra- and extracellular space. This is illustrated in panel C.

The volume fractions were fixed at well established values in all simulations of
normal grey matter: ICS= 20%/ECS= 80%. The membrane permeability was
estimated from [34] where the diffusional permeability of channel-free portions of
human blood brain barrier (BBB) has been measured to PBBB = 0.0024 mm/s.
Being the best estimate available, this value is used for Pd in all presented simu-
lations of normal grey matter. We have chosen to limit our simulations to these
few parameter ranges because it has been demonstrated that other DWMR model
architectures have many different and, in some cases, unrealistic parameter combi-
nations that will reproduce the experimental data [11, 13]. In this manner we have
investigated if the DWMR signal from normal grey matter is reproduced with this
model scheme using credible biophysical parameters. The parameter values pro-
ducing acceptable agreement with measurements are given in the Results section
and their relation to known values is expanded upon in the Discussion. Simulations
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were performed using the same gradient strengths and diffusion timings (δ/∆) as
the experimental scans. Therefore, the b-values used in the simulation are identi-
cal to the scanning protocol: 0–4500 s/mm2. Due to the stochastic nature of the
model, simulations were repeated and averaged to ensure satisfactory statistics.
All reported simulation results are the mean value of 40 simulations.

Diffusion in grey matter has been shown to be isotropic in a number of stud-
ies (e.g. [28, 29]). To investigate model isotropy the optimized simulations were
repeated with a gradient direction orthogonal to the first.

2.1.6 Simulating pathological tissue

The typical time course of the ADC in human stroke is a uniform reduction in
ADC during the first hours of stroke followed by an increase to hypernormal values
after few days (see e.g. [30]). The model allows evaluation of the effect of various
tissue perturbations that are believed to be responsible for the observed ADC
changes. One effect is cell swelling which has been observed to follow ischemia in
several studies [31, 32] and has been suggested as a possible mechanism behind
the ADC reduction in ischemic grey matter. Other studies have shown ischemia
to be followed by a reduction of intracellular ADC by up to 30% independent of
cell swelling [33]. The simulations of pathological tissue evaluate the effects of
cell swelling alone and in combination with a reduced diffusion coefficient in the
ICS. The effect of membrane disruption is also simulated by setting both exchange
probabilities equal to 1. Cell swelling is simulated by eroding the four original
DLA clusters (function ‘imerode’, MatLab, The Mathworks Inc.). In this process
the area of the DLA cluster is reduced corresponding to a reduction of the ECS
volume. Two degrees of ICS swelling were produced: by eroding the original DLA
cluster (resulting mean ECS = 8.8%) and by eroding the geometry produced by
the first erosion (resulting mean ECS = 2.4%). For the simulations of swelling
alone, the parameter values from the simulations of normal grey matter were used.
Since the ADC change is the parameter of interest, only the b-values 0 and 960
s/mm2 were evaluated allowing calculation of the ADC using:

ADC = −1

b
ln

( S(b)

S(b = 0)

)
(5)

With this series of simulations, stages along the entire time course of the ADC in
stroke were investigated.

2.2 Experimental methods

All experiments were performed on a 1.5T magnet (GE Medical Systems, Milwau-
kee, USA) equipped with a standard 40 mT/m gradient system and a quadrature
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head coil. Five healthy male volunteers (age 24–36 yrs) were used in this study.
All experiments were approved by the local ethics committee and all subjects
gave written consent prior to their inclusion in the study. The scanning protocol
used for all examinations consisted of a scout and a T2 weighted axial fast spin
echo sequence (Field of View (FOV)/Repetition Time (TR)/Echo Time (TE) =
24cm/5000ms/105ms) to determine the slice locations for the diffusion imaging.
The diffusion imaging consisted of a single shot PGSE Echo Planar Imaging (EPI)
sequence (FOV/TR/TE= 22cm/5000ms/77.6ms) with a matrix of 96 × 96. Slice
thickness was 3.0 mm yielding voxels of dimensions 2.3 × 2.3 × 3.0 mm3. Images
were obtained in two slices with b-values increasing from 0–6000 s/mm2 in a se-
quence of sixteen evenly distributed steps in gradient amplitude. The diffusion
times were δ/∆ =22.4 ms/35.5 ms. Sixteen averages were used giving a total scan
time of 21.3 min. One subject was also examined with a protocol using Inversion
Recovery (IR) EPI with an inversion time (TI) of 2200 ms to examine the effect of
suppressing the signal from cerebrospinal fluid (CSF). Apart from the use of the
IR preparation pulse, this protocol was identical to the first. This data set has
also been used in previous modeling studies [11, 13].

2.3 Data Analysis

Using a T2 weighted scan as reference, pure grey matter regions in the prefrontal
cortex were selected in all data sets by an expert radiologist (8–12 voxels per slice
from each volunteer) in the b = 0 DWMR image. Partial volume effects and CSF
contribution was carefully minimized by also using diffusion images with a higher
b-value where CSF signal intensity quickly diminished compared to grey matter.
The experimental standard deviation was determined as the mean of a signal-free
region divided by (π/2)1/2 to account for the Raleigh distributed background noise
and combined with the standard deviation obtained from multiple identical mea-
surements in the same grey matter region in the same person. It should be noted
that this experimental noise value is an estimate because of sporadic blanking of
pixels in the signal free background by the scanner software. Pixels inside the
subjects were not affected. We found no method for removing this unwanted phe-
nomenon. Consequently, our experimental uncertainty underestimates the noise.
Data points having an intensity lower than two times the standard deviation of the
signal free background were discarded. Because of this exclusion criteria, model
output was compared to 14 b-values ranging from 0–4500 mm2/s. Due to the sim-
ilarity of the grey matter DWMR signal from all five subjects (Fig. 4), the average
signal curve, Sav(b), was computed and was used for analysis to allow investigation
of model behaviour across different DLA clusters. It must be noted that applying
the method to a single data is unproblematic, but at this early stage, a thorough
investigation of model performance was considered more important. Therefore,
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Figure 4: The experimental grey matter data from all five subjects along with
the average curve. Since only small variation is seen between subjects, a choice
was made to use the average curve and focus on simulation behaviour across DLA
structures.

model output from four different DLA clusters was investigated. Typical simula-
tion time was six hours on a standard cpu.

As described above both simulations and experimental data have uncertainties.
As described above the experimental uncertainty is underestimated due to pixel
blanking and so the combined error is not suited for calculating standard goodness
of fit measures such as χ2. The sum of residual norms, F , is therefore used as a
measure of the goodness of agreement:

F =
∑

i

|Sexp(bi)− Ssim(bi)| (6)

where the summation runs over all data points. Here the criterion for satisfactory
agreement was set to F < 0.25. This value was chosen to allow for an average
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Table 1: Parameters from all four DLA clusters and mean values. The membrane
permeability was set equal to the permeability of the blood brain barrier using
Eq. 2. Diffusion coefficients DICS, DECS and calculated ADC are given in units of
10−3 mm2/s.

]1 ]2 ]3 ]4 mean ± std

DICS 0.62 0.60 0.62 0.61 0.61± 0.09
DECS 3.20 3.20 3.20 3.20 3.20± 0.00
ADC 0.88 0.88 0.88 0.88 0.88± 0.00

difference between the normalized simulation and experimental signal below 0.02
for each of the b > 0 data points (the signals will always agree at b = 0 due
to normalization). As can be seen from Fig. 5 this criterion produces agreement
within the uncertainty between simulation and experiment.

3 Results

3.1 Normal grey matter

Agreement (F < 0.25) between simulations and experimental data was obtained
for four DLA clusters. The parameters from all four DLA clusters are given in
Table 1 along with average value and standard deviation for each parameter. Fig. 5
shows an example of the output from the DLA-based model along with the average
experimental data. The simulation shown in Fig. 5 agrees with the experimental
data with a goodness of F = 0.20 (see Eq. [6]). Each data point has error bars of
± one standard deviation. The model reproduced the in vivo DWMR signal using
two diffusion coefficients and a transition probability which is directly related to
diffusive membrane permeability. The corresponding exchange probabilities were
calculated using Eq. [2]. The physical (i.e. unrestricted) diffusion coefficients used
to produce the simulated signal presented in Fig. 5 were DECS = 3.2 · 10−3 mm2/s
and DICS = 0.61 · 10−3 mm2/s. The parameter values obtained from each DLA
cluster are given in Table 1.

Using Eq. [5] with b = 0 and b = 960 s/mm2 produces an experimental ADC
for normal grey matter of 0.88± 0.1 · 10−3 mm2/s and an average simulation ADC
of 0.88 · 10−3 mm2/s. The simulations performed to investigate the degree of
isotropy showed only minor effects of gradient direction on the simulated signal as
measured by the agreement with the experimental signal (F ). These simulations
are not included in the further analysis. Fig. 6 shows the result of a simulation of
the ICS signal component alone. This simulation was performed with a membrane
permeability of zero. The graph shows the ICS signal to be non-mono-exponential.
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Figure 5: The experimental data and simulation output with error bars. The model
presented here reproduces the observed MR signal. The simulation parameters for
this plot were: DECS = 3.2 · 10−3 mm2/s and DICS = 0.61 · 10−3 mm2/s.

3.2 Pathological tissue

3.2.1 Cell swelling

The results of cell swelling on the ADC are summarized in Table 2, which shows
volume fractions, obtained ADC values, and the corresponding ADC change with
respect to the normal state ADC for each DLA cluster. All values are obtained
from Eq. [5].

3.2.2 Reduced IC diffusivity

The isolated effect on ADC of a gradual decrease of IC diffusivity (5–30% decrease)
has been evaluated with all other parameters set equal to the normal state values
for each DLA cluster. The ADC changes were calculated with respect to the normal
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Figure 6: The simulated signal S(b) from the intra-cellular compartment (imper-
meable membrane) is not well described by a single exponential as indicated by
the quality of the linear fit to log(S). A quadratic fit to log(S) (i.e. cumulant
expansion) is presented for comparison.

Table 2: The two degrees of cell swelling and the resultant changes in ADC for
each DLA cluster.

]1 ]2 ]3 ]4 mean ± std
ECS vol. fractions 1 (%) 8.8 8.7 8.8 8.9 8.8± 0.1

∆ADC (%) −2.7 −3.7 −3.9 −5.3 −3.9± 1.1
ECS vol. fractions 2 (%) 2.5 2.4 2.4 2.4 2.4± 0.1

∆ADC (%) +11.6 +10.7 +12.2 +12.0 +11.1± 1.0

state ADC for the relevant DLA cluster. The simulations show reduction of IC
diffusivity to cause the overall ADC to decrease linearly (r2 = 0.999). Simulations
of the combined effect of reduced diffusivity in the ICS and cell swelling have also
been performed. These results are given in Table 3.
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Table 3: The effect of severe ICS swelling (mean ECS = 2.4%) combined with
30% (a) and 40% (b) reduction of intracellular diffusion coefficient on the ADC
for each DLA cluster. All other parameters were set equal to the normal-state
value for each DLA cluster. The ADC changes were calculated wit h respect to
the normal-state ADC for the relevant DLA cluster.

]1 ]2 ]3 ]4 mean ± std
ECS vol. fractions (%) 2.5 2.4 2.4 2.4 2.4± 0.1

∆ADCa (%) −19.1 −22.0 −19.0 −20.6 −20.2± 1.4
∆ADCb (%) −31.1 −33.0 −30.1 −32.6 −31.7± 1.3

3.2.3 Cell swelling and membrane disruption

The effect of severe cell swelling in combination with membrane disruption on the
ADC is relevant for understanding the effects of vasogenic oedema on the DWMR
signal. The results of these simulations are shown in Table 4.

Table 4: The effect of severe ICS swelling (mean ECS = 2.4%) and membrane
disruption (p = 1) as reflected in the ADC for each DLA cluster. The ADC
changes were calculated with respect to the normal state ADC for the relevant
DLA cluster.

]1 ]2 ]3 ]4 mean ± std
ECS vol. fractions (%) 2.5 2.4 2.4 2.4 2.4± 0.1

∆ADC (%) +21.6 +18.7 +20.9 +20.1 +20.3± 1.2

4 Discussion

4.1 Simulations of normal grey matter

The simulations yielded almost identical parameter values across the four DLA
clusters (Table 1). The model uses three variable parameters (volume fractions
not counted) one of which (the membrane permeability) is held fixed at PBBB =
0.0024 mm/s to reproduce the observed signal. All three parameters are directly
interpretable in terms of biophysical properties of the tissue: two physical diffusion
coefficients and diffusive membrane permeability. Furthermore, the simulations
performed to test model isotropy show little or no dependency on gradient direction
which is also the case for the DWMR signal in grey matter [28, 29]. This overall
agreement between model output and the DWMR signal observed in normal grey
matter suggests that the model is relevant for interpreting the DWMR signal
from normal and diseased grey matter. The tissue properties involved in this
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interpretation are complex tissue geometry, trans-membrane water exchange, and
regionally different diffusion coefficients.

The parameter values were restricted to ranges around the best available mea-
sured values or estimates. The ICS water diffusivity has yet to be measured in
vivo and so we are limited to using values obtained in model systems to obtain
an order of magnitude estimate. In [4] a fast diffusing intra-cellular component
of 0.48 ± 0.14 · 10−3 mm2/s was observed in single neuron cytoplasm along with
an overall ADC of 0.3 · 10−3 mm2/s. This value was obtained from excised L7
Aplysia California neurons at 22◦C and therefore cannot be compared directly to
human grey matter at physiological temperature. However, taking the tempera-
ture difference into account and using the intracellular diffusion coefficients from
various biological tissues reported in [35], we have estimated the value range for
DICS as stated in section 2.1.5. Our simulations produced an average value of
DICS of 0.61± 0.09 · 10−3 mm2/s. The free water self-diffusion coefficient at 35◦C
was measured to be 2.92 · 10−3 mm2/s in [36]. In agreement with this, the dif-
fusion coefficient of CSF at physiological temperature is generally accepted to be
3.0–3.2·10−3 mm2/s. The average simulation EC diffusion coefficient of 3.2·10−3

mm2/s agrees with this value.
Model agreement with experimental values is lowest for data points at low

b-values. This suggests a vascular component in the data. The vasculature in
grey matter (3–5%) produces intravoxel incoherent motion (IVIM) which has been
shown to contaminate the DWMR signal for b-values up to ∼300 s/mm2 [37]. If
the measurements contain a fast signal decay due to IVIM effects, the model is
forced to reproduce this component through an elevated fast diffusion component
even though the tissue water diffusion is not entirely responsible for the signal
behavior in this b-value regime. This may have increased the model estimate
of the ECS diffusivity slightly. In future studies this issue could be avoided by
including vasculature in the model, by omitting data points below b ≈ 300 s/mm2

or by using data obtained from excised tissue samples or simpler model systems.
In [5] a non-mono-exponential signal decay was observed from Xenopus oocyte

intracellular space alone. This behavior was also observed in single neurons in [4].
It is interesting to note that the model reproduces this behavior qualitatively. This
is illustrated in Fig. 6 which shows the result of a simulation of the ICS signal
component alone, along with linear and quadratic fits. Sehy et al. [5] suggested
that this behavior is not produced by restriction but rather that brain intra-cellular
water is made up of both fast and slow fractions, and further that brain extra
cellular water may include either the fast component alone or both components.
The present model produces these apparent components as results of geometry
alone. This agrees with the conclusions drawn from a 1D model in [38]. In [10]
tissue microstructure is related to the coefficients in the second order cumulant
expansion. This presents a physical argument for the goodness of the quadratic
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fit in Fig. 6 by showing that the properties of the confining geometry is to some
degree contained in the coefficients of the second order fit. For comparison, we
mention that the χ2 of the quadratic fit to the ICS signal is about 1% lower than
the χ2 of a biexponential fit (not shown) to the ICS signal component. This may
be of value when choosing the method of mathematical analysis of DW MRI data
since both these methods are used for analysis of DWMR data in the literature.

4.2 Simulations of pathological tissue

4.2.1 Cell swelling

The pathophysiology of ischemia and ischemic infarction involves cell swelling along
with other effects that can influence the overall ADC. Examples are decreases in
all or some of the following: blood flow, axonal streaming, physiological motion,
and temperature [39]. In [3] a two stage ADC drop was observed where the first
decrease was suggested to arise from water shifts and the second was attributed
to actual cell death. This indicates several causes for the ADC decrease in patho-
logical tissue, emphasizing the need to study the effect of isolated mechanisms
as well as combinations of mechanisms in order to understand the ADC decrease
quantitatively. It has also been suggested that disintegration of biomolecules (such
as microtubules) may change intracellular viscosity and ADC, but this effect was
not observed in Xenopus oocyte treated with nocodazole, which depolymerizes mi-
crotubules [6]. In the same study ADC increase was observed after cell swelling.
The authors suggest this increase to be caused by inflow of water and dilution of
the cytoplasm. Table 2 shows the results from simulations of moderate and severe
degrees of cell swelling. For the case of moderate swelling the simulations predict
a small decrease in ADC with an average reduction of the extra-cellular volume
fraction to 9% to be followed by an ADC reduction of 3.9%. This decrease is not
as large as observed in vivo: a reduction of extracellular volume to 5% along with
an ADC decrease of approximately 45% in rat grey matter following cardiac ar-
rest was reported in [31]. For the case of severe cell swelling the simulations show
the overall ADC to increase to hypernormal values. The hypernormal ADC in
severe cell swelling is likely caused by the heavy restriction of the fast diffusing EC
spin pool which normally dephases rapidly due to its fast diffusion. With swelling
this spin pool begins to contribute to the signal because its signal is no longer
as strongly attenuated by diffusion. As a whole, Table 2 shows that swelling can
produce both increase and decrease in overall ADC. This indicates that there are
intermediate states of cell swelling that are not reflected in the overall ADC value.
These simulations also indicate that the ADC decrease observed in ischemia is not
solely caused by cell swelling.
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4.2.2 Reduced IC diffusivity

Decreased IC diffusivity results from energy failure. Sehy et al. [33] reported a 30%
decrease of intracellular water ADC as a result of energy failure in Xenopus oocyte.
A decrease in intracellular ADC following ischemia was also reported in [31, 40].
These observations agree with diffusion measurements on the intracellular marker
N-acetyl-aspartate (NAA) during ischemia in rat brain [41]. In [42] the ADCs of
brain metabolites were found to decrease to approximately 45% of their normal
values following cardiac arrest in rat. For a correct interpretation of the DWMR
signal in ischemia it is of value to understand the effect of the reduction of IC
diffusivity on the DWMR signal. The results of the simulations show the decrease
in intra-cellular diffusivity to cause a linear decrease in the overall ADC.

4.2.3 Combined effects

By combining cell swelling with 30% and 40% decreases of intra-cellular diffusivity
the present model reproduces the order of the ADC decreases observed in vivo.
The results are given in Table 3. In [43] a continuous ADC increase to hypernormal
values was found in photothrombotic lesions in rat brain. After 14 days ADC had
increased by 44% compared to control. The authors suggest that this increase
reflects tissue degeneration with the vanishing of the intracellular compartment
due to disintegration of cell bodies. In this phase the vasogenic oedema is likely
to have increased the intra-cellular ADC to its normal value or above in spite of
intra cellular ADC decrease due to energy failure. The simulations of severe cell
swelling and membrane disruption using normal state diffusion coefficients predict
ADC values above normal by 20%. Increasing the ICS diffusion coefficient will
raise this value further.

4.2.4 Summary of results from simulations of pathological tissue

In summary, the simulations show that the model can reproduce stages along the
time course of the ADC in stroke using combinations of known mechanisms. The
isolated effect of each of these mechanisms has also been simulated showing that
reducing the IC diffusivity influences the overall ADC linearly while swelling can
produce both increase and decrease in overall ADC. It is interesting to note that
the combined effects of reduced IC diffusivity and cell swelling are not additive; the
ADC changes caused by both mechanisms in combination are not the sum of the
changes produced by the isolated mechanisms. This illustrates the interplay be-
tween the biophysical mechanisms responsible for the early signal changes observed
in ischemic brain tissue. DWMR-based evaluation of tissue state on the cellular
level would be important in the clinic. The ability to extract detailed information
directly or indirectly reflecting energy failure, membrane disruption or degree of
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cell swelling would improve DWMR based diagnostics and provide clinicians with
an estimate of the progression of the ischemic cascade and the likelihood of lesion
reversibility.

5 Conclusion

This paper presents model framework for simulating the PGSE DWMR signal from
tissue. The simulations use real biophysical characteristics and fractal geometries
for describing tissue complexity. The model, applied to experimental data from
normal human grey matter, successfully reproduced the overall behaviour of the
DWMR signal from grey matter using values for volume fractions, membrane per-
meability and IC and EC diffusion coefficients that compare favorably with values
from the literature. The simulations showed that the DWMR signal characteristics
are caused primarily by complex tissue geometry, trans-membrane water exchange,
and regionally different diffusion coefficients. Further simulations investigated sig-
nal changes observed in ischemia and predicted the effects of cell swelling, reduced
intra-cellular diffusivity and membrane disruption on the DWMR signal. The re-
sults showed that the model can reproduce stages along the time course of the ADC
in stroke using plausible mechanisms and credible parameter values. The simula-
tions indicated that cell swelling and reduced intracellular diffusion are dominant
causes of the ADC reduction observed in early ischemia, with changes in diffusive
membrane permeability playing a minor role. Also, the simulations suggested that
cell swelling in combination with cell membrane disruption causes the observed
increase to hypernormal ADC values. Thus, the model provides some insight into
underlying causes of DWMR signal changes in neural tissue of potential importance
for diagnostic and therapeutic approaches to ischemia. However, for this model
to evolve beyond the conceptual stage precise measurements of ICS diffusivity in
living tissue under normal and perturbed conditions are needed.
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