
DAMARIS – A flexible and open software platform for NMR
spectrometer control

Achim Gädke1, Markus Rosenstihl1, Christopher Schmitt2, Holger Stork1, Nikolaus Nestle1,3

1 Institute of Condensed Matter Physics, TU Darmstadt
2 Informatics, University of Applied Sciences, Frankfurt

3 BASF AG Ludwigshafen, GKP/P, G 201

Corresponding author: Achim Gädke, Institute of Condensed Matter Physics, TU Darmstadt,
Hochschulstraße 6, D-64289 Darmstadt, E-Mail: Achim.Gaedke@physik.tu-darmstadt.de

(received 7 June 2007, accepted 10 July 2007)

Abstract

Home-built NMR spectrometers with self-written control software have a long tradition in
porous media research. Advantages of such spectrometers are not just lower costs but also
more flexibility in developing new experiments (while commercial NMR systems are
typically optimized for standard applications such as spectroscopy, imaging or quality control
applications). Increasing complexity of computer operating systems, higher expectations with
respect to user-friendliness and graphical user interfaces as well as increasing complexity of
the NMR experiments themselves have made spectrometer control software development a
more complex task than it used to be some years ago. Like that, it becomes more and more
complicated for an individual lab to maintain and develop an infrastructure of purely home-
built NMR systems and software. Possible ways out are:

● commercial NMR hardware with full-blown proprietary software or
● semistandardized home-built equipment and common open-source software

environment for spectrometer control.

Our present activities in Darmstadt aim at providing a nucleus for the second option:
DArmstadt MAgnetic Resonance Instrument Software (DAMARIS) [1]. Based on an ordinary
PC, pulse control cards and ADC cards, we have developed an NMR spectrometer control
platform that comes at a price tag of about 8000 Euro.

The present functionalities of DAMARIS are mainly focused on TD-NMR: the software
was successfully used in single-sided NMR [2], pulsed and static field gradient NMR
diffusometry [3]. Further work with respect to multipulse/multitriggering experiments in the
time domain [4] and solid state NMR spectroscopy multipulse experiments are under
development.

Keywords

NMR instrumentation, spectrometer control software, open source

The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application

© 2007, A. Gädke,
Diffusion Fundamentals 5 (2007) 6.1 - 6.9 1

mailto:Achim.Gaedke@physik.tu-darmstadt.de
mailto:Achim.Gaedke@physik.tu-darmstadt.de
mailto:Achim.Gaedke@physik.tu-darmstadt.de

1. Introduction

Reviewing a long tradition of home-built spectrometers [5,6,7,8,9] at universities and
research institutes, one can see that these developments were driven by

● the need for special features, mobility or flexibility,
● the detailed understanding of the measurement procedure,
● complex pulse sequences and precise definition of data processing,
● adaption to already existing devices,
● the lack of money.

Nevertheless, such equipment is often used with great success at the very forefront of
research in NMR. However, often home-built software lacks proper documentation and has no
long term support. Frequently, it is designed and built up just for a single spectrometer.

In the Darmstadt case, a lab with nine rather different spectrometers had evolved with time.
They were run with three different software platforms, each of them bound to specific
hardware.

In attempts to keep up with novel developments, each of these spectrometer concepts
revealed design limits or was found not to work properly even within its original
specifications. Based on these experiences, a more general solution was sought, enabling
experimentalists to use the same experimental control environment at different spectrometers
and sharing the effort to improve the common parts of software.

The outcome of these endeavors is the DAMARIS concept – consisting of hardware and
software components – which are described and presented on exemplary measurements in this
contribution.

2. Project Outline

DAMARIS spectrometers are based on usual personal computers which are equipped with
a pulse pattern generator and an analog digital converter (ADC). The computer runs a
common operating system (Windows XP or Linux) which provides access to the NMR
specific hardware via the vendors' drivers. The drivers are controlled by a so called “back
end” program which organizes the components' interactions to a running MR spectrometer.

Fig. 1: Structure of DAMARIS software components

HDF
data

pulse
sequence

hardware dependent
drivers, spectrometer

specific code

custom wiring,
line drivers,

devices' interfaces

front
end

back
end

resulting
text f iles

result
processing

extension boards
with specific
adapters to devices

frontend
pulse sequences, loops
filtering, integration

pulse sequence commands

AD converters' results

spectrometer maintainer's decision:experimenter's choice:

ADC card

...

cardpulse

...

© 2007, A. Gädke,
Diffusion Fundamentals 5 (2007) 6.1 - 6.9 2

To address the spectrometer's power components (e.g. RF amplifiers, gradient shape
controls, pulse formers) a customized digital controller unit (often called the “line driver”,
see figure 2) is used. It connects the pulse pattern generator with all other devices, and
achieves a timing control with a precision of several nanoseconds during a single MR signal
scan.

This “back end” is fed with the actual MR experiment sequences by the “front end”, which
is independent of the specific hardware components, therefore the same “front end” can be
used on all DAMARIS machines. Information is exchanged via file system, files written
subsequently by the “front end” represent “jobs” (e.g. single shots) for the “back end”.
Correspondingly data measured by the “back end” is stored in “result” files. So it is easily
possible to replay experiments or analyze results on single shot level. Furthermore, this
interface only requires basic programming skills to write one's own “frontend”. Modern
operating systems handle file access via cache, so the performance is satisfying.

This modularized approach enables the lab staff to fit in old and new devices into the
DAMARIS environment. The instrumental modularization rules the software design of the
“back end”. Dedicated driver components (classes in terms of object oriented software written
in C++) are provided, which are lumped together in the “back end” program. Furthermore the
“back end” translates the pulse sequence into specific control signals for the individual
hardware components.

Dividing the spectrometer control software into a “back end” and a “front end” part one
can realize both dedicated NMR programs for well-defined use cases (“single button
applications”) and more advanced options based on general scripting facilities for ongoing
methods development. Presently two types of “front ends” are available: a LabView [10]
based “front end” and a “front end” solely dependent on free software, which will be
described in this article.

This “front end” based on Python [11] and GTK [12] is used for method development in
our lab. It provides two scripts which control the experimental procedure and the data
processing separately. To monitor the spectrometer while the measurement is conducted, plots
of the recorded datasets can be displayed and saved online. These scripts are based on the
Python scripting language, so they offer all features of a full programming language.
Especially the data processing script benefits from numerical extensions like scipy and numpy
[13,14,15].

This “front end” provides an unified access to research lab's MR spectrometer capabilities:
● Pulse sequences can be modified in all parameters,
● Instrumental constants (e.g. preamplifiers' dead time and gating) are accessible,
● Raw data treatment can be controlled in detail by the “front end”,
● Storage of all relevant parameters and processing results is possible in the portable

data format HDF5 [16].

Furthermore the expertise on the control software and specific hardware components is
collected online [1]. The source code of DAMARIS is freely available, so other labs can join
this project. By founding a widespread community sharing code and documentation, mutual
benefits will be achieved.

© 2007, A. Gädke,
Diffusion Fundamentals 5 (2007) 6.1 - 6.9 3

3. Representative Spectrometer Setup

Fig. 2: Exemplary DAMARIS hardware structure

The present standard setup for DAMARIS works with a PulseBlaster 24Bit (SpinCore,
Gainsville, FL) pulse programming board and a MI4021 (Spectrum GmbH, Grosshansdorf,
Germany) ADC card. To address all remote controlled frequency and phase registers of PTS
(Littleton, MA) frequency synthesizers, we have developed a demultiplexing device with 12
TTL lines – in contrast to 48 PTS input lines. All other devices are driven by direct
connections to the pulse card. For example such a spectrometer is in operation at a static field
gradient spectrometer and provides a home-built positioning stage to control the sample
position relative to the magnetic field gradient.

Besides those standard components several other boards and extensions are supported:

● ADC cards from Datel (now C&D Technolgies, Blue Bell, PA), TiePie (Sneek,
Netherlands) and Spectrum (Grosshansdorf, Germany)

● Pulse pattern generators and DDS frequency generator boards from SpinCore,
(Gainsville, FL)

● Reference frequency generator from PTS (Littleton, MA) with phase and frequency
control

● TecMag (Houston, TX) 20Bit DAC for pulsed field gradient control
● Eurotherm (Leesburg, VA) 2000 Series temperature control

All required software components are free and open source (except from some low level
drivers bundled together with hardware). For Debian Linux a ready-made package is
provided, which makes installation very easy, for most other recent Linux systems the base
packages are contained in the standard distribution. In this case, the actual DAMARIS
software has to be installed from source files. All packages are also available for Microsoft
Windows, but unfortunately each must be installed manually. Detailed installation instructions
are given on the homepage.

4. Example use case: Recording of primary and stimulated echo in
a stimulated echo sequence

Recording both a Hahn echo and a stimulated echo attenuation curve in static field gradient
NMR allows separation of T2 and diffusion effects [3].

φ ν

Personal Computer with DAMARIS
Computer Hardware

Extensions
Spectrometer

Devices
Probe(head)

ADC

Pulses

Reference-Frequency Pulse-
Former

line drivers &
devices' interfaces

Pow er Amplif ier

Preamplif ier & Receiver

© 2007, A. Gädke,
Diffusion Fundamentals 5 (2007) 6.1 - 6.9 4

Fig. 3: Static field gradient stimulated echo sequence with primary and stimulated echo. If multiple triggering is
available both echoes can be read out in one run of the sequence.

Traditionally two separate runs were made: The Hahn echo experiment (H) was conducted
separately and afterwards the stimulated echo (S) has been recorded in another experiment
run.

H =exp −2
3

2G2


3D⋅exp −2

T 2

 (1)

S ,t=exp −
2G2D

2
t2

3
⋅exp −2

T2

⋅exp− t
T1

 (2)

The echoes evolve differently in  [17], so it is possible to derive both parameters by fitting
the two datasets simultaneously.

An alternative approach is to use the primary echo (P), which arises inside the stimulated
echo sequence. It has half the amplitude of the Hahn echo and follows the same diffusion
attenuation [18]. By dividing both echo amplitudes, one can remove the influence of T2:

S
P 

∝exp−2G2D2t (3)

DAMARIS supports multiple signal acquisition intervals, which can be placed arbitrarily
in the sequence. The following pulse program definition will serve as example: Pulse
sequences are housed in Python functions, so essential parameters become arguments of that
function:

def stim_echo(repetitiontime, tau1, tau2, pi, det_phase, cycle):

A simple experiment from scratch will be defined, so one starts definition like that:

 exp=Experiment()
 exp.set_description("tau1", tau1)
 exp.set_description("tau2", tau2)

The previous two commands attribute the values 1 and 2 to this single shot. The times
assigned here are the actual time intervals as they can be found in literature. The technical
details are tackled in the code below and by the “back end”. The “back end” copies these
attributes to the corresponding single shot data, so the result processing script will handle
them properly.

The next lines declare the phase cycles for pulses and accumulation; for more pulses
calculation rules may be used replacing long lists:

 # phases of rf pulses used later
 cycle_phase1=(0, 0, 0, 0,180,180,180,180)[cycle%8]
 cycle_phase2=(0, 0,180,180, 0, 0,180,180)[cycle%8]
 cycle_phase3=(0,180, 0,180, 0,180, 0,180)[cycle%8]
 # transmit corresponding signal phase to accumulation
 exp.set_description("det_phase1", (0,0,0,0,
 180,180,180,180)[cycle%8])
 exp.set_description("det_phase2", (0,180,180,0,

τ τ τ
t

Stimulated echoPrimary echo

© 2007, A. Gädke,
Diffusion Fundamentals 5 (2007) 6.1 - 6.9 5

 180,0,0,180)[cycle%8])

Here the very pulse sequence is written:

 # wait necessary mulitple of T1 before starting
 exp.set_frequency(frequency, cycle_phase1)
 exp.wait(repetitiontime)
 # first pulse
 exp.ttl_pulse(2e-6, GATE)
 exp.ttl_pulse(pi/2.0, PULSE)
 # wait dephasing time tau1
 exp.set_phase(cycle_phase2)
 exp.wait(tau1-(2.5e-6)-pi/2.0)
 # second pulse
 exp.ttl_pulse(2e-6, GATE)
 exp.ttl_pulse(pi/2.0, PULSE)
 # set detection phase and wait for echo
 exp.set_phase(det_phase)
 exp.wait(tau1-(9.5e-6)-pi/4.0)
 #first recording (interval lasts 210 µs)
 exp.record(1024*4, 20e6, 210e-6)
 exp.set_phase(cycle_phase3)
 # wait rest of mixing time tau2
 exp.wait(tau2-(202.5e-6)-tau1-pi/4.0)
 # third pulse
 exp.ttl_pulse(2e-6, GATE)
 exp.ttl_pulse(pi/2.0, PULSE)
 # set detection phase and wait echo time
 exp.set_phase(det_phase)
 exp.wait(tau1-(9.5e-6)-pi/4.0)
 exp.record(1024*4, 20e6)
 return exp

The experiment is subsequently defined by Python command lines, which allow arbitrary
mathematical operations to place pulses and calculate their parameters. In this example the
acquisition intervals are chosen in a way that the echoes' maxima occur at 10 µs after start of
the acquisition interval, so that a suitable data processing script can easily find and evaluate
the maxima. Because this is a subroutine, the defined and parametrized pulse sequence must
be returned to the calling program.

The main program named “experiment” uses this pulse sequence definition inside nested
loops for the desired parameter ranges and repetitions:

def experiment():
 # declaration of relevant values
 t1 = 0.117289 # s
 pi = 3.0e-6 # at 20 db attenuation
 phase0 = -20 # deg
 # define tau2 dependent ranges for tau1
 tau1_dict={ 1e-3 : log_range(80e-6, 400e-6, 20),
 5e-3 : log_range(80e-6, 250e-6, 20),
 10e-3: log_range(80e-6, 150e-6, 20)}
 # nested loops vary parameters
 for tau2 in [1e-3, 5e-3, 10e-3]:
 for tau1 in tau1_dict[tau2]:
 for accu in xrange(1600):
 e=stim_echo(t1*3, tau1, tau2, pi, phase0, accu)
 yield e

© 2007, A. Gädke,
Diffusion Fundamentals 5 (2007) 6.1 - 6.9 6

DAMARIS is now ready to run – it is possible to save each single shot's raw data for
extensive inspection. Normally one prefers to process these data immediately by a “result
script”:

In the following only the separation of the two data sets with subsequent baseline
correction, phase rotation and accumulation for each echo will be explained. Everything
happens again in a dedicated Python function called “result”. The “for” loop is fed with the
single shots one after the other. The variable “data” holds all data that go to the monitor: The
experiment can be observed by browsing through the contents of “data” by name in the
graphical “front end”. In addition its contents is saved periodically to HDF files in order to
prevent data loss in the rare case a crash occurs during a long run.

def result():
 for timesignal in results:
 # provide raw single scan to monitor
 data["timesignal"]=timesignal
 # read pulse sequence's time constants
 tau1=float(timesignal.get_description("tau1"))
 tau2=float(timesignal.get_description("tau2"))
 both_param="tau1=%g,tau2=%g"%(tau1,tau2)
 # baseline correction and phase rotation for first echo
 timesignal1=timesignal.get_result_by_index(0)
 baseline_correction(timesignal1, 30e-6, 400e-6)
 p1=float(timesignal.get_description("det_phase1"))
 rotate_signal(timesignal1, -p1)
 # insert digital filtering, clipping, fft here
 # accumulate (and create a new data set if necessary)
 if both_param+",echo1" not in data:
 data[both_param+",echo1"]=Accumulation(error=True)
 data[both_param+",echo1"]+=timesignal1
 # similar code for second echo
 # ...

Here DAMARIS tries to be as explicit as possible. It should be obvious how data are
treated and this procedure should be adaptable in all details. A “swiss knife” results'
processing script can be found on the DAMARIS website. Robust echo height estimation
tools – suitable for noisy data – are available on the homepage, too. The creation of plots with
error-bars and Fourier transform features are explained in the documentation, which is on-
hand online [1].

Fig. 4: Results of ex post evaluation script based on scipy [14] for diffusion measurement for glycerol at 25°C.


1

2

lo
g(

S
/P

)/


2

© 2007, A. Gädke,
Diffusion Fundamentals 5 (2007) 6.1 - 6.9 7

The axes are chosen to indicate the proportionality of (3) explicitly.

When the experiment is done, the postprocessing of these data will take place. Either the
result script creates a plain text file with all necessary echo heights or one uses the HDF dump
file. The ex post analysis will be done outside the python “front end” and thereby it is not
limited to python. The HDF file can be processed by Matlab, Mathematica, hdfview [15] and
Python. In this case a dedicated diffusion analysis with Python [11] and the scipy [13]
packages provides automatically the diffusion coefficient for a glycerol sample at 25°C and
G=156 T/m as graphics output (see figure 4) and text:

#> python EvalStimEcho.py DAMARIS_data_pool.h5
D(tau2=0.001)=1.0163e-11 +/- 1.83801e-13 (1.8 %) [red]
D(tau2=0.01)=9.07037e-12 +/- 7.23758e-13 (8.0 %) [green]
D(tau2=0.005)=9.73602e-12 +/- 3.27998e-13 (3.4 %) [blue]

Compared to literature, this value is too high at a factor of 4, due to traces of water in the
glycerol [19].

5. Conclusions

By now the software is in routine use on five spectrometers with different hardware
configurations in Darmstadt. The software is portable for Windows and Linux – only limited
by the hardware vendors' drivers. Also spectrometers in Dortmund and Berlin were set up.

The software design aims to research labs, which extend standard pulse sequences,
integrate arbitrary devices to standard NMR setups to pursue their investigations. It is
designed to serve scientific needs of explicit data handling and novel approaches to signal
processing

The open-source approach allows to shares improvements and bug fixes among the user
community for mutual progress. Also the exchange of pulse programs, data processing
features and implementation of new hardware is easily possible.

In order to develop its potential fully, the DAMARIS community needs to grow,
involvement of many labs of different branches of NMR is highly welcome and desired.

References

[1] DArmstadt MAgnetic Resonance Instrument Software (DAMARIS) user page and
documentation http://www.fkp.physik.tu - darmstadt.de/damaris/

[2] Single-sided and semisingle-sided NMR sensors for highly diffusive samples:
Application to bottled beverages, H. Stork, A. Gädke, N. Nestle, J. Agric. Food Chem.
54(15), 2006

[3] Water self-diffusion studies in complex materials with fast-relaxing components: Static
and pulsed field methods revisited, Achim Gädke, Karen Friedemann, Petrik Galvosas,
Frank Stallmach, Jörg Kärger, Nikolaus Nestle, accepted to Diffusion Fundamentals,
2007

[4] Apparent Longitudinal Relaxation of Mobile Spins in Thin, Periodically Excited Slices,
A. Gädke, N. Nestle, Diffusion Fundamentals 2(71), 2005

[5] An earth's field nuclear magnetic resonance apparatus [...] under Antarctic conditions,
P.T. Callaghan e.a., Rev. Sci. Instrum. 68(11), 1997

[6] universal MS-DOS based NMR spectrometer software by Gerald Hinze, used in Mainz,
Dortmund and Darmstadt (unpublished)

[7] LabView based NMR spectrometer software by Markus Nolte, used in Darmstadt
(unpublished)

[8] ODIN - Object-oriented development interface for NMR, T.H. Jochimsen, M. von

© 2007, A. Gädke,
Diffusion Fundamentals 5 (2007) 6.1 - 6.9 8

http://www.fkp.physik.tu-darmstadt.de/damaris/
http://www.fkp.physik.tu-darmstadt.de/damaris/
http://www.fkp.physik.tu-darmstadt.de/damaris/

Mengershausen, Journal of Magnetic Resonance 170 (1), 2004
[9] Strategies for solid-state NMR in high-field Bitter and hybrid magnets, P. J. M. van

Bentum, J. C. Maan, J. W. M. van Os, A. P. M. Kentgens, Chem. Phys. Let. 376(3-4),
2003

[10] LabView by National Instuments http://www.ni.com/labview
[11] Python scripting language homepage http://www.python.org/
[12] GTK “The GIMP Toolkit” http://www.gtk.org/
[13] Hans Petter Langtangen: Python Scripting for Computational Science, Springer, 2nd

edition 2005
[14] Python scientific extension http://www.scipy.org/
[15] Numerical Python extension http://www.numpy.org/
[16] Hierarchical Data Format: HDF-group homepage http://hdf.ncsa.uiuc.edu/
[17] Measurement of Translational Molecular Diffusion Using Ultrahigh Magnetic Field

Gradient NMR, Burkhard Geil, Concepts in Magnetic Resonance, 10(5), 1998
[18] Spin Echoes, E.L. Hahn, Physical Review, 80(4), 1950
[19] Diffusion Coefficients for the Binary System Glycerol+Water at 25°C, J. Chem Eng.

Data, 49(2004)

© 2007, A. Gädke,
Diffusion Fundamentals 5 (2007) 6.1 - 6.9 9

http://hdf.ncsa.uiuc.edu/
http://hdf.ncsa.uiuc.edu/
http://hdf.ncsa.uiuc.edu/
http://www.numpy.org/
http://www.numpy.org/
http://www.numpy.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.gtk.org/
http://www.gtk.org/
http://www.gtk.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.ni.com/labview
http://www.ni.com/labview
http://www.ni.com/labview

	DAMARIS – A flexible and open software platform for NMR spectrometer control
	Abstract
	Keywords
	1. Introduction
	2. Project Outline
	3. Representative Spectrometer Setup
	4. Example use case: Recording of primary and stimulated echo in a stimulated echo sequence
	5. Conclusions
	References

