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Abstract

The multiple correlation function approach is briefly presented and applied to inves-
tigate spin-echo signal attenuation due to restricted diffusion in simple geometries
(slab, cylinder, and sphere) in the presence of surface relaxation. Exact and explicit
representations for the zeroth and second moments of the total phase accumulated
by diffusing spins are derived by using the Laplace transform summation technique.
Within the Gaussian phrase approximation, these two moments determine the refer-
ence and diffusion-weighted signals, respectively. In the slow-diffusion or short-time
regime, the series expansion in half-integer powers of the diffusion coefficient is
generalized to arbitrary temporal profile of a linear magnetic field gradient. In the
motional-narrowing or long-time regime, it is shown how the presence of surface re-
laxation modifies the classical Robertson’s relation. Practical consequences of these
findings are discussed.
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1 Introduction

Restricted diffusion is a fundamental transport mechanism in many physi-
cal, chemical, biological and industrial systems. The presence of a geometrical
confinement strongly influences the motion of diffusing species and the func-
tioning of the system. This influence was experimentally observed in different
fields, in particular, in nuclear magnetic resonance (NMR). In a typical spin-
echo experiment, the combination of 90◦ and 180◦ radio-frequency (rf) pulses
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is used to excite and refocus the transverse magnetization of nuclei diffusing
in an inhomogeneous magnetic field (e.g., a linear gradient g). The resulting
spin-echo signal is formed by a large ensemble of the nuclei, each of which
traveled a random trajectory and thus experienced different magnetic field in-
tensities. Hahn, and later Carr and Purcell found the echo amplitude at time
T for unrestricted diffusion in a steady linear gradient [1,2]

E ∝ exp
[

−γ2g2T 3D/12
]

, (1)

γ being the nuclear gyromagnetic ratio, and D the free diffusion coefficient.
When the motion of nuclei is restricted, the behavior is remarkably different.
For a steady linear gradient, the signal attenuation was first predicted by
Robertson and experimentally observed by Wayne and Cotts for restricted
diffusion of methane gas between two parallel Teflon plates at distance L [3,4]

E ∝ exp
[

−γ2g2TL4/(120D)
]

. (2)

In particular, the signal is very sensitive to the size L of the geometrical
confinement.

Since Robertson, many theoretical, numerical and experimental works dealt
with restricted diffusion in simple confinements (see [5,6] for reviews). Neuman
extended Robertson’s result to a cylinder and a sphere [7], while Tarczon and
Halperin considered nonlinear magnetic fields in a slab [8]. Stoller, Happer, and
Dyson analyzed the spectral problem associated to the Bloch-Torrey equation
on an interval [9]. Their predictions were confirmed by Hürlimann and co-
workers who measured the signal attenuation due to diffusion of water protons
between parallel glass coverplates [10].

In addition to gradient-induced dephasing, surface relaxation causes the mag-
netization loss and the consequent signal attenuation. Brownstein and Tarr
considered restricted diffusion in the presence of surface relaxation in homo-
geneous magnetic fields (without linear gradient) [11]. Mitra and co-workers
developed a mathematical theory to study the influence of surface relaxation
on the effective diffusion coefficient D(t) for pulsed-gradient spin-echo (PGSE)
experiments [12–14]. The assumption of very narrow gradient pulses allowed
them to deduce a number of analytical results. In particular, for isotropic
smooth boundaries, they found in the short-time limit

D(t)

D
= 1 − 4

3
√
π

S

V d
(Dt)1/2 +

S

3V

(

ρ

2
− H

4

)

(Dt) +O
[

(Dt)3/2
]

, (3)

where ρ is the surface relaxivity, S/V is the surface-to-volume ratio, H is the
mean curvature of the surface, and d is the dimension of space. This asymptotic
expansion has been illustrated by analytical results for a sphere. de Swiet and
Sen derived similar asymptotic relations for a steady linear gradient [15]. Ex-
perimental measurements of the time-dependent diffusion coefficient D(t) were
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suggested to determine the surface-to-volume ratio and surface relaxation in
porous media [16–18]. Coy and Callaghan investigated in detail restricted dif-
fusion between parallel planes in PGSE experiments in the presence of surface
relaxation, comparing theoretical, numerical and experimental results [19]. In
addition, Callaghan gave explicit formulas for the PGSE signal attenuation
for planar, cylindrical and spherical pores [20].

For efficient numerical investigation, several matrix formalisms have been de-
veloped. Caprihan and co-workers proposed a multiple-narrow-pulse approx-
imation for restricted diffusion in a time-varying field gradient [21], while
Callaghan reformulated it in an elegant matrix form [22,23]. An alternative
approach was developed by Barzykin [24,25] and further extended by Axelrod
and Sen [26] and by Grebenkov [6]. The latter extension was called “multiple
correlation function” approach. This general mathematical technique allows
the spin-echo signal and all the moments of the total dephasing to be expressed
in terms of the eigenvalues and eigenfunctions of the Laplace operator in any
confining domain (see below).

Except for the case of very narrow gradient pulses (PGSE experiment), analyt-
ical derivation of the signal attenuation in the presence of surface relaxation
is a difficult task, even for simple geometries. Kuchel and co-workers first
attempted extending the results of Robertson and Neuman to include sur-
face relaxation for restricted diffusion in a sphere in a steady linear magnetic
field gradient [27]. They expressed the analytical solution as an infinite series
of spherical Bessel functions. However, the important condition ensuring the
magnetization survival up to the echo time (see below) was not taken into
account, leading to emergence of a (fictituous) second minimum in the sig-
nal dependence on the diffusion coefficient. This may serve as an illustration
for the technical complexity of finding analytical solutions including surface
relaxation.

In this paper, the multiple correlation function approach is used to derive rig-
orous results for restricted diffusion in simple geometries (slab, cylinder and
sphere) in the presence of surface relaxation. As shown in [6], the symmetry
of these domains implies that the spin-echo signal and all relevant charac-
teristics are determined by the Laplace operator eigenvalues only. This is a
crucial simplification of the problem that allows one to apply efficient an-
alytical methods like a Laplace transform summation technique. Using this
technique, we obtain an exact and explicit relation for the Laplace transform
of the zeroth and second moments. In a typical situation of weak gradients,
these moments determine the signal attenuation (so-called “Gaussian phase
approximation”). We show how surface relaxation may influence the effective
or apparent diffusion coefficient in the slow-diffusion and motional-narrowing
regimes.
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The paper has twofold purpose. On the one hand, we demonstrate the facilities
of using the multiple correlation function approach in theoretical studies. The
choice of simple geometries allows one to perform the calculation analytically.
In particular, the efficiency of the Laplace transform summation technique
is illustrated. On the other hand, the classical relations of Robertson and
Neuman are extended to include surface relaxation. Although the obtained
formulas are specific for slab, cylinder, and sphere, their common features
seem to be quite general.

The paper is organized as follows. In the next Section, a brief introduction
to the multiple correlation function approach is given following Ref. [6]. The
computation for three geometries (slab, cylinder, and sphere) is presented.
In Sec. 3, we consider the slow-diffusion regime and describe the Laplace
transform summation technique. Section 4 concerns the motional-narrowing
regime. General discussion and physical applications of the derived mathe-
matical results are presented in Sec. 5. Some technical issues are placed in the
Appendixes.

2 Multiple correlation function approach

In this section, we briefly present the multiple correlation function approach
following Ref. [6]. The historical background and further details can be found
in that reference.

2.1 Total accumulated phase

In a typical spin-echo experiment, the combination of a 90◦ rf pulse at time
0 and of a 180◦ rf pulse at time T/2 is used to excite and refocus the trans-
verse magnetization of nuclei, forming an echo at time T . For computational
purpose, it is convenient to introduce dimensionless time 0 ≤ t ≤ 1 by rescal-
ing the time interval between 0 and T . We consider the magnetic field with
a linear gradient in direction eg and of the maximum intensity g. The time
dependence of the gradient is represented via the normalized temporal profile
f(t), in which the magnetization sign change by the 180◦ rf pulse is effec-
tively taken into account (Fig. 1). The temporal profile satisfies the rephasing
condition so that the total accumulated phase of immobile nuclei would be 0:

1
∫

0

dt f(t) = 0.
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Fig. 1. Normalized temporal profile (shown by bold line) with two rectangular pulses
of duration δ, where the magnetization sign change by the 180◦ rf pulse is effectively
taken into account. One retrieves a steady (bipolar) gradient for δ = 1/2.

In contrast, a diffusing nucleus experiences different magnetic field intensities
and thus accumulates the total phase ϕ up to the echo time:

ϕ = (γgLT )

1
∫

0

dt f(t) B(Xt), (4)

where B(Xt) is the normalized projection of the spin trajectory Xt onto the
gradient direction eg: B(Xt) = (Xt · eg)/L, L being a characteristic size of
the confining domain Ω. Since the diffusing nuclei are confined to remain in
the domain, Xt is a random trajectory of the reflected Brownian motion [28].
The integral in Eq. (4) is thus a random variable, that we denote φ, and the
coefficient q = γgLT in front of the integral is the dimensionless gradient
intensity so that ϕ = qφ.

A spin echo is formed by the whole ensemble of diffusing nuclei. The measured
macroscopic signal appears then by averaging the transverse magnetization
eiqφ of each individual nucleus over the sample. Since the number of the nuclei
is very large, one can replace this ensemble average by expectation over all
possible Brownian trajectories:

E ∝ E{exp[iqφ]}. (5)

In the presence of surface relaxation, the signal decays even without linear
gradient. In practice, one usually normalize the above diffusion-weighted signal
by so-called reference signal E0 ∝ E{1} without linear gradient (q = 0). For
weak gradients (q � 1), the series expansion of Eq. (5) yields

Enorm ' E{1} − q2
E{φ2/2} + ...

E{1} ' exp

[

−q2 E{φ2/2}
E{1}

]

(6)

(assuming that the first moment vanishes). This relation is often called “Gaus-
sian phase approximation” (GPA). In probabilistic language, the above ratio
of the moments can be understood as conditional expectation over the nuclei

5
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whose magnetizations are survived up to the echo time. In what follows, we
investigate this quantity in detail.

2.2 Zeroth moment

The attenuation of the spin-echo signal by surface relaxation without linear
magnetic field gradient was first considered by Brownstein and Tarr [11]. This
signal E0 is formed by the diffusing nuclei whose transverse magnetization
“survived” up to the echo time: E0 ∝ E{1}. In probabilistic language, the
zeroth moment represents the fraction of survived trajectories:

E{1} =
∫

Ω

dr0 ρ0(r0)
∫

Ω

dr1 G1(r0, r1), (7)

where ρ0(r0) is the initial density of the nuclei, and Gt(r, r
′) is called the

diffusive propagator, heat kernel, or, equivalently, Green’s function of diffusion
equation in the confining domain Ω. The above expression states that the
signal is averaged over all spins started at time t = 0 at random position r0

(chosen with the probability ρ0(r0)dr0) and arrived at time t = 1 to random
position r1 (with the probability G1(r0, r1)dr1).

It is convenient to introduce the orthonormal eigenfunctions um(r) and the
normalized eigenvalues λm of the Laplace operator, ∆ = ∂2/∂x2

1 + ...+∂2/∂x2
d,

in the confining domain Ω:

∆um +
λm

L2
um =0 (in Ω), (8)

∂um

∂n
+
h

L
um =0 (on ∂Ω). (9)

Here ∂/∂n is the outward normal derivative, and

h = ρL/D

is the dimensionless surface relaxivity. The heat kernel can be expanded in a
series over eigenfunctions

Gt(r, r
′) =

∞
∑

m=0

um(r) u∗m(r′) e−ptλm , (10)

where

p = DT/L2

6
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is the dimensionless diffusion coefficient. The substitution of the above expan-
sion in Eq. (7) yields

E{1} =
∞
∑

m=0

Um e−pλm Ũ∗
m,

where

Um =V 1/2
∫

Ω

dr0 ρ0(r0) um(r0),

Ũm =V −1/2
∫

Ω

dr1 um(r1),

V being the volume of the confining domain Ω. By introducing the infinite-
dimensional diagonal matrix

Λm,m′ = δm,m′λm,

one can write the zeroth moment E0 in the compact form of a scalar product:

E{1} =
(

U e−pΛ Ũ∗
)

.

2.3 Second moment

Similarly, the second moment can be explicitly written as a kind of time av-
erage < ... >

2
with a given normalized temporal profile f(t) of the correction

function E{Xt1Xt2}:
E{φ2/2} =<E{Xt1Xt2}>2

. (11)

Here the time average of any function F (t1, t2) is defined as

<F (t1, t2)>2
=

1
∫

0

dt1 f(t1)

1
∫

t1

dt2 f(t2) F (t1, t2), (12)

while the correction function is

E{Xt1Xt2} =
∫

Ω

dr0 ρ0(r0)
∫

Ω

dr1 Gt1(r0, r1) B(r1) ×
∫

Ω

dr2 Gt2−t1(r1, r2) B(r2)
∫

Ω

dr3 G1−t2(r2, r3).
(13)

The last integral over r3 is required to ensure that the magnetization of the
considered nucleus is not lost until the echo time. 1 Substitution of the series

1 If there is no surface relaxation (h = 0), the last integral is simply equal to 1 due
to the normalization of the heat kernel. When h > 0, the omission of this integral
may lead to artifacts (see Ref. [27]).
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expansion (10) into Eq. (13) yields

E{Xt1Xt2} =
∞
∑

m1=0

∞
∑

m2=0

∞
∑

m3=0

Um1
e−pλm1

t1 Bm1,m2
×

e−pλm2
(t2−t1) Bm2,m3

e−pλm3
(t2−t1) Ũ∗

m3
,

where
Bm,m′ =

∫

Ω

dr u∗m(r) B(r) um′(r).

Using the diagonal matrix Λm,m′, the triple sum over m1, m2 and m3 can be
written in the compact form of a scalar product:

E{Xt1Xt2} =
(

U e−pΛt1 B e−pΛ(t2−t1) B e−pΛ(1−t2) Ũ∗
)

.

Similar expression can be written for the n-point correlation function [6]

E{Xt1 ...Xtn} =
(

U e−pΛt1 B e−pΛ(t2−t1) ... B e−pΛ(1−tn) Ũ∗
)

. (14)

The nth-order moment E{φn/n!} is then given by multiple integration of this
expression with the normalized temporal profile f(t):

E{φn/n!} =

1
∫

0

dt1 f(t1)...

1
∫

tn−1

dtn f(tn) E{Xt1 ...Xtn}. (15)

2.4 Simple geometries

To illustrate applications of the multiple correlation function approach, we
consider restricted diffusion in simple geometries: a slab, a cylinder, and a
sphere. In this case, the Laplace operator eigenbasis is known explicitly [29,30],
allowing us to perform the computation analytically. Note also that the in-
version symmetry of these domains implies that all odd moments E{φ2n+1}
vanish.

2.4.1 Slab

We start with the case of two parallel infinite planes at distance 2L = 2 (a
slab) when the gradient direction is perpendicular to them. This problem is
equivalent to one-dimensional diffusion on the interval (−1, 1). In contrast with
Ref. [6], we consider here the symmetric interval to simplify calculations 2 .
For convenience, the eigenmodes will be enumerated by double index m =

2 Many results for a symmetric slab can be related to those in Ref. [6] by rescaling
the length L by factor 2. So, the dimensionless parameters become: p = 4p′, q =

8
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(nk). The first integer n ∈ {0, 1} distinguishes two sets of eigenfunctions and
eigenvalues:

u0k = β0k cos(α0kx), λ0k = α2
0k,

u1k = β1k sin(α1kx), λ1k = α2
1k.

The second index k = 0, 1, 2... enumerates all positive zeros αnk of the func-
tions

y0(z) = z sin z − h cos z,

y1(z) = z cos z + h sin z,
(16)

representing the boundary condition (9). The normalization constants βnk are

βnk =

(

λnk + h2

λnk + h(h+ 1)

)1/2

.

Barzykin computed the matrix B and the vectors U and Ũ for restricted
diffusion between parallel planes in a linear magnetic field gradient with a
uniform initial density ρ0(r) = 1/2 [25]:

Unk =Ũnk = δn,0

√
2 h

√

λ0k(λ0k + h(h+ 1))
,

Bnk,n′k′ =2δn,n′±1

√
λnk

√

λnk + h(h + 1)

√
λn′k′

√

λn′k′ + h(h + 1)

λnk + λn′k′ + 2h2

(λnk − λn′k′)2
.

(17)

As a result, the numerical computation is completely reduced to finding the
positive zeros αnk of the functions y0(z) and y1(z) in Eq. (16) that can be
implemented in a simple and rapid way.

2.4.2 Cylinder

For an infinite cylinder (or a circle) of unit radius, the classical representation
of the eigenfunctions involves two positive indices n and k

unk(r, ϕ) =
εn√
π

βnk

Jn(αnk)
Jn(αnkr) cos(nϕ),

q′/2, h = h′/2, where prime denotes the parameters from Ref. [6]. Note that the
expressions for βnk, Unk, Bnk,n′k′ , and other related quantities are also modified due
to the shift of the interval.
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where Jn(z) are the Bessel functions of the first kind. The eigenvalues λnk =
α2

nk are expressed through the positive zeros αnk of the functions

yn(z) = z J ′
n(z) + h Jn(z), (18)

representing the boundary condition (9). The normalization constants βnk are

βnk =

(

λnk

λnk − n2 + h2

)1/2

.

For a linear gradient and uniform initial density ρ0(r) = 1/π, one finds [6]

Unk =Ũnk = δn,0
2h

√

λ0k(λ0k + h2)
,

Bnk,n′k′ =δn,n′±1

(

1 + δn,0 + δn′,0

)1/2
βnkβn′k′

λnk + λn′k′ − 2nn′ + 2h(h− 1)

(λnk − λn′k′)2
.

(19)

2.4.3 Sphere

For a sphere of unit radius, the eigenfunctions are

unk(r, θ) =
1√
2π

βnk

jn(αnk)
jn(αnkr) Pn(cos θ),

where the third index and the polar coordinate are omitted. Here Pn(x) are
the Legendre polynomials, and jn(z) the spherical Bessel functions

jν(z) = (π/2z)1/2 Jν+1/2(z).

The eigenvalues λnk = α2
nk are expressed thourgh the positive zeros of the

functions

yn(z) = z j′n(z) + h jn(z), (20)

representing the boundary condition (9). The normalization constants βnk are

βnk =

(

(2n+ 1)λnk

λnk − n(n+ 1) + h(h− 1)

)1/2

.
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For a linear gradient and uniform initial density ρ0(r) = 3/4π, one finds [6]

Unk =Ũnk = δn,0

√
6 h

√

λ0k(λ0k + h(h− 1))
,

Bnk,n′k′ =
(n + n′ + 1) δn,n′±1

(2n+ 1) (2n′ + 1)
βnk βn′k′×

λnk + λn′k′ − n(n′ + 1) − n′(n+ 1) + 1 + 2h(h− 2)

(λnk − λn′k′)2
.

(21)

2.5 Explicit relations for the moments

Substituting the above explicit formulas for B, Λ, U and Ũ into the matrix
representation (14), one can write correlation functions in an exact and explicit
form. So, the reference signal is proportional to

E{1} = 2dh2
∞
∑

k=0

e−pλ0k

λ0k(λ0k + h(h− d+ 2))
(22)

for three geometries: slab (d = 1), cylinder (d = 2) and sphere (d = 3).
Although the structure of this sum is the same for the three confining domains,
the sets of the eigenvalues λ0k are different.

Similarly, the two-point correlation function can be written explicitly as

E{Xt1Xt2} =8h2
∑

k1,k2,k3

e−pλ0k1
t1

(λ0k1
+ h(h− d+ 2))

×

λ0k1
+ λ1k2

+ 2h(h− d+ 1)

(λ0k1
− λ1k2

)2

λ1k2
e−pλ1k2

(t2−t1)

λ1k2
+ (h+ 1)(h− d+ 1)

×

λ0k3
+ λ1k2

+ 2h(h− d+ 1)

(λ0k3
− λ1k2

)2

e−pλ0k3
(1−t2)

(λ0k3
+ h(h− d+ 2))

,

(23)

where the sums over n1, n2 and n3 were reduced to n1 = n3 = 0 and n2 = 1
due to Kronecker δ-symbols in the relations (17, 19, 21) for the matrix B and
the vector U . Higher-order moments can also be treated in a similar way (see
[32] for some related techniques).

It is worth noting that Eqs. (22) and (23) are exact, no simplifying approxima-
tions were used. For numerical analysis, one first finds for a given h the positive
zeros αnk of the functions yn(z) given by Eq. (16), (18), or (20), depending
on the domain. The asymptotically quadratic growth of the eigenvalues λnk

with k ensures a rapid convergence of the above sums (if p is not too small).
Although this computation is simple and accurate, it is not complete (ex-
cept for the reference signal). For instance, calculation of the second moment

11
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E{φ2/2} (or any higher-order moment) requires the time average of the corre-
lation function with a given temporal profile f(t) according to Eq. (15). The
complete computation may become too lengthy and very time consuming.

This challenge can be overcome in two asymptotic regimes when the dimen-
sionless diffusion coefficient p is small or large with respect to 1. Using the
explicit form of Eqs. (22) and (23), one can derive accurate results for both
regimes. In the next section, a Laplace transform summation technique is ap-
plied to study the slow-diffusion regime p� 1, while the motional narrowing
regime p� 1 will be considered in Sec. 4. It will be shown that the obtained
results are accurate and applicable to a wide range of the parameter p.

3 Slow-diffusion regime

In the slow-diffusion regime p � 1, a large number of terms has to be taken
into account for accurate computation of the moments E{1} and E{φ2/2}. We
start with a simpler case of the zeroth moment to better illustrate the ideas,
while the computation of the second moment is given in Appendix.

Since p is small, the asymptotic behavior of E{1} as a function of p could
formally be obtained by expanding the exponential function e−pλ0k in Eq. (22)
in a power series:

E{1} '
( ∞
∑

k=0

2dh2

λ0k(λ0k + h(h− d+ 2))

)

− p

( ∞
∑

k=0

2dh2

λ0k + h(h− d+ 2)

)

+ ...,

where the expressions in parentheses would be just coefficients depending on
h and d. Although this expansion gives correct asymptotic behavior up to p
(see below), the higher-order terms diverge, failing this naive approach.

To overcome this difficulty, it is convenient to perform the Laplace transform
of E{1} with respect to p:

L[E{1}](s) = 2dh2
∞
∑

k=0

1

λ0k(λ0k + h(h− d+ 2))(s+ λ0k)
. (24)

As the zeroth moment itself, its Laplace transform is expressed as a sum over
eigenvalues λ0k. But the crucial simplification here is that the terms in Eq. (24)
are products of simple fractions, without exponential functions. Elementary
algebraic transformations reduce this sum to

L[E{1}](s) =
2dh2

h(h− d+ 2) − s

(

η0(0) − η0(−h(h− d+ 2))

h(h− d+ 2)
− η0(0) − η0(−s)

s

)

,

(25)
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where

ηn(s) ≡
∞
∑

k=0

1

s− λnk
. (26)

Since the eigenvalues λnk are determined through the zeros of some explicit
functions, the summation in Eq. (26) can be performed analytically, as shown
below.

3.1 Laplace transform summation technique

The computation of the function ηn(s) in Eq. (26) is based on a simple con-
sequence of the Mittag-Leffler theorem in complex analysis [31]. Let {zk} be
a sequence of all zeros (with multiplicities {mk}) of some entire function y(z)
so that it can be written as

y(z) = a0

∏

k

(z − zk)
mk

(here a0 is a constant). Taking derivative and dividing it by y(z), one formally
gets

y′(z)

y(z)
=
∑

k

mk

z − zk

.

In the case of infinite sequence of zeros, this consideration can be made rigorous
by requiring that zk go to infinity, and

∑

k

1

|zk|
= ∞. (27)

For slab, cylinder, and sphere, the set {±αnk} contains all the simple zeros zk

(with multiplicities mk = 1) of the entire functions yn(z) defined by Eq. (16),
(18), or (20), depending on the domain. The asymptotic behavior αnk ∝ k (for
fixed n) implies the divergence of the series in Eq. (27), allowing one to apply
the Mittag-Leffler theorem for the computation of the functions ηn(s)

ηn(s) =
1

2
√
s

∞
∑

k=0

(

1√
s− αnk

+
1√

s+ αnk

)

=

(

y′n(z)

2z yn(z)
− n

2z2

)

z=
√

s

. (28)

Here the last term is subtracted to get rid off the supplementary zero z =
0 (with multiplicity n) of the function yn(z) when n > 0. Substitution of
Eqs. (16), (18), and (20) into Eq. (28) leads to exact and explicit relations for
the function ηn(s), e.g.
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η0(s)=
(h− d+ 2)ψd(s) + 1

2(sψd(s) − h)
, (29)

η1(s)=
(h− d+ 1) − (s+ d(h− d+ 1))ψd(s)

2s(1 + (h− d+ 1)ψd(s))
, (30)

where the function ψd(s) is defined as

ψd(s) =







































sin(
√
s)√

s cos(
√
s)
, d = 1,

J1(
√
s)√

s J0(
√
s)
, d = 2,

j1(
√
s)√

s j0(
√
s)
, d = 3.

(31)

As one will see, many other sums involving the eigenvalues λnk can be ex-
pressed through this function.

3.2 Zeroth moment

Substitution of the explicit function η0(s) in Eq. (25) yields, after algebraic
simplifications, the following exact relation:

L[E{1}](s) =
1

s
− hd

s

ψd(−s)
h+ sψd(−s)

. (32)

The zeroth moment E{1} as a function of p can then be found by the inverse
Laplace transform, albeit this operation is difficult in practice. In the limit
h → 0, one simply gets L[E{1}](s) = 1/s, and the inverse Laplace transform
is equal to 1 as it should be in the case without surface relaxation.

The asymptotic behavior in the slow-diffusion regime p → 0 corresponds to
s→ ∞. In this limit, the asymptotic behavior of the function ψd(−s) is

ψd(−s) '



















s−1/2
(

1 − 2e−2
√

s + ...
)

, d = 1,

s−1/2
(

1 − s−1/2/2 − s−1/8 + ...
)

, d = 2,

s−1/2
(

1 − s−1/2 + 2e−2
√

s + ...
)

, d = 3.

(33)

Note that the series expansion for d = 1 and d = 3 contains only few terms
(s−1/2 for d = 1 and s−1/2 − s−1 for d = 3) and exponentially small correc-
tions. In contrast, the series expansion for d = 2 contains infinite number of
polynomial terms. The substitution of these expansions in Eq. (32) yields

L[E{1}] =
1

s
− hd

s2
+
h2d

s5/2
− h2(h− (d− 1)/2)d

s3
+O(s−7/2) .
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Using the identity L−1[s−β] = tβ−1/Γ(β) with the Euler gamma function Γ(z),
one finds the zeroth moment in the slow-diffusion regime (p� 1)

E{1} = 1 − hd p+
4

3
√
π
h2d p3/2 − 1

2
h2(h− (d− 1)/2)d p2 +O(p5/2) . (34)

3.3 Second moment

The expression (23) for the correlation function E{Xt1Xt2} contains three ex-
ponential functions with different arguments. The triple Laplace transform of
this expression with respect to pt1, p(t2 − t1), and p(1 − t2) yields a cumber-
some but still elementary sum (see Appendix A.3). Its terms are products of
fractions containing the eigenvalues λnk. The Laplace transform summation
technique can be applied in a similar way as for the zeroth moment, but the
computation becomes more lengthy. The main steps of this computation are
given in Appendix A.4. The net result is the following:

E{φ2/2} ' p < (t1 − t2)>2
+ p3/2 4

3
√
π

[

< (t2 − t1)
3/2>

2
+

h

(

<t
3/2
2 >

2
+ <t

3/2
1 >

2
+ < (1 − t1)

3/2>
2
+ < (1 − t2)

3/2>
2

)]

+O(p2)

(35)

where the time averages were defined by Eq. (12). When the Gaussian phase
approximation is applicable, this result determines the spin-echo signal atten-
uation according to Eq. (6) in the slow-diffusion regime (p� 1).

When the effective temporal profile f(t) is antisymmetric, f(1 − t) = −f(t),
the time averages in front of h compensate each other, resulting in the classical
expansion 3

E{φ2/2} ' p < (t1 − t2)>2
+ p3/2 4

3
√
π
< (t2 − t1)

3/2>
2
+O(p2). (36)

The dependence of the second moment on h appears in higher-order terms.
This observation is useful in two opposite situations. On the one hand, if
surface relaxation effects should be reduced, the use of antisymmetric tempo-
ral profiles is preferable. On the other hand, if slow-diffusion measurements
are intended for determination of the surface relaxivity, it is worth to apply

3 For details, see [6] and references therein. At this point, it is worth recalling that
here, in contrast to Ref. [6], L is the half separation length between parallel planes.
Due to this distinction, the coefficient in front of p3/2 in Eq. (36) is 4/3

√
π, and

not 8/3
√

π as in Ref. [6]. At the same time, the results are exactly the same for a
cylinder and a sphere.
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non-antisymmetric temporal profiles. In this case, the temporal profile can be
optimized to increase the contribution of the last term in Eq. (35).

3.4 Temporal profiles

The above results can be applied for arbitrary temporal profile f(t). As an
example, we consider the temporal profile consisting of two rectangular pulses
of duration δ with 0 < δ ≤ 1/2 (Fig. 1):

f(t) = Θ(t) − Θ(t− δ) − Θ(t− 1/2) + Θ(t− 1/2 − δ), (37)

where Θ(t) is the Heaviside function: Θ(t) = 1 for t > 0, and 0 otherwise.
Tedious but straightforward calculation yields for any power α > 0

< (t2 − t1)
α>

2
=

2δα+2 + 2(1/2)α+2 − (1/2 + δ)α+2 − (1/2 − δ)α+2

(α + 1)(α + 2)
,

< tα1 >2
= − <tα2 >2

=
(1/2 + δ)α+2 − δα+2(α+ 1) − (1/2)α+2(1 + 2(α+ 2)δ)

(α + 1)(α+ 2)
.

For example, in the case of a steady bipolar gradient (δ = 1/2), one has

< (t1 − t2)>2
=

1

12
,

<−(t2 − t1)
3/2>

2
=

4 −
√

2

35
,

< t
3/2
1 >

2
= − <t

3/2
2 >

2
=

16 − 7
√

2

140
.

When the gradient pulses are very narrow (δ � 1), one finds

< (t1 − t2)>2
= δ2(1/2 − δ/3),

<−(t2 − t1)
3/2>

2
' (1/2)3/2δ2,

< t
3/2
1 >

2
= − <t

3/2
2 >

2
' (1/2)5/2δ2.

In general, the time averages can be found by numerical integration with a
given profile f(t).
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4 Motional-narrowing regime

In the motional-narrowing regime (p � 1), diffusing spins explore the con-
fining domain several times during the experiment. Since the eigenvalues λnk

rapidly grow with k and appear as arguments of exponential functions, the
relevant contributions to the related sums correspond to the lowest eigenvalue.
For instance, the zeroth moment E{1} can be very accurately approximated
by the first term in Eq. (22) with k = 0:

E{1} ' 2h2d

λ00(λ00 + h(h− d+ 2))
e−pλ00 . (38)

For weak surface relaxation (h � 1), one can replace λ00 by its asymptotic
value hd, giving

E{1} ' e−phd.

In the opposite limit of very strong surface relaxation (h → ∞), the lowest
eigenvalue approaches a constant λ∞00, so that the zeroth moment tends to

E{1} ' 2d

λ∞00
e−pλ∞

00 .

Note that

λ∞00 =















π2/4 ' 2.467401101, d = 1,

' 5.783185964, d = 2,

π2 ' 9.869604404, d = 3

(for d = 2,
√
λ∞00 is the first positive zero of J0(z)).

4.1 Second moment

The analysis of the second moment is more complicated. In Sec. 3, we first
computed the correlation function E{Xt1Xt2}, found its asymptotic behavior
as p→ 0, and then took time average according to Eq. (11). When p is large,
such a perturbative approach fails since the series expansion of the exponential
functions in Eq. (23) is not applicable any more. To overcome this difficulty,
it is convenient first to calculate the time average with a chosen temporal
profile f(t), and then compute the remaining sum. To illustrate the idea, we
consider a steady (bipolar) linear gradient (37) with δ = 1/2, for which a
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direct computation yields

<e−p1t1−p2(t2−t1)−p3(1−t2)>
2

=
2e−p1/2−p2/2 − 2e−p1/2−p3/2 + 2e−p2/2−p3/2 − e−p2

(p2 − p3)(p2 − p1)
+

e−p1

(p1 − p3)(p1 − p2)
+

e−p3

(p3 − p1)(p3 − p2)
,

(39)

pi denoting pλni,ki
(one can also treat arbitrary duration 0 < δ < 1/2). The

computation of the remaining sum could be performed in the general case
(i.e., for any value of p) by using the Laplace transform summation technique
of Sec. 3. The resulting formula is exact but too lengthy for practical use.

When p is large enough, the analysis is much simpler since the relevant contri-
butions come only from the terms containing the lowest eigenvalue λ00 (other
terms decrease much faster). The technical details of the computation are
given in Appendix A.5. The net result for the second moment in the motional-
narrowing regime is:

E{φ2/2} '
(

ζ−1(h)

p
− 3ζ−2(h)

p2

)

e−pλ00 , (40)

where two coefficients ζ−1(h) and ζ−2(h) and the lowest eigenvalue λ00 de-
pend both on h and the confining geometry. Their exact formulas and asymp-
totic expressions are given in Appendix A.5. In the case of a purely reflecting
boundary (h = 0), one retrieves the classical results derived by Robertson
and Neuman [3,7]. It is worth noting that further corrections to Eq. (40) are
exponentially small so that this formula is very accurate for large enough p.
As discussed in [6], the presence of only two terms p−1 and p−2 is a specific
feature of the steady bipolar temporal profile f(t). In general, one should ex-
pect the leading term of order of p−1, while correction terms can be different.
In the next section, we discuss the physical consequences of these findings.

5 Discussion

We start by resuming the relevant physical quantities describing the signal
attenuation. Three dimensionless parameters were introduced to quantify the
gradient strength (q = γgTL), the diffusion rate (p = DT/L2), and the surface
relaxation (h = ρL/D). Since the total phase is proportional to g, its second
moment is always proportional to q2. When the Gaussian phase approximation
(6) is valid, all the nontrivial properties of restricted diffusion reside in the
dependence of the moments E{1} and E{φ2/2} on the two other parameters,
p and h.
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Fig. 2. Normalized second moment E{φ2/2}/E{1} as a function of p for a cylinder
with h = 1: accurate numerical summation (solid line), slow-diffusion regime (36)
(circles) and motional-narrowing regime (40) (pluses). For comparison, the normal-
ized second moment with h = 0 and h = ∞ is shown by dashed and dotted lines,
respectively (croses indicate the motional-narrowing approximation for h = ∞).
Similar behavior is observed for a slab and a sphere (not shown).

5.1 Normalized second moment

Figure 2 shows the normalized second moment E{φ2/2}/E{1} as a function of
p for a cylinder for different values of h. The obtained ∩-shape is well known
for the case without surface relaxation (h = 0). When the nuclei diffuse slowly
(p� 1), their dephasing is small and the consequent signal attenuation is weak
(left branch of the curve). In the opposite limit p� 1, the nuclei diffuse very
fast so that magnetic field inhomogeneities are averaged out, making the vari-
ables Xt1 and Xt2 be almost uncorrelated. As a consequence, the correlation
function E{Xt1Xt2} is small (right branch of the curve). When the diffusion
length

√
DT is comparable to the size L of confinement (i.e., p ∼ 1), the sec-

ond moment reaches its maximum, yielding the strongest signal attenuation
(at fixed gradient intensity). It is important to stress that this ∩-shape appears
for any value of the dimensionless surface relaxivity h. 4 Similar behavior is
found for a slab and a sphere (not shown).

As one can see, the slow-diffusion approximation (36) and the motional-
narrowing approximation (40) provide very accurate description of the nor-
malized second moment for small and large p, respectively. Moreover, their
domains of applicability extend almost to p = 1.

In the slow-diffusion regime, the normalization by E{1} can lead only to cor-
rections of order of p2 or higher:

E{φ2/2}/E{1} ' E{φ2/2} +O(p2) (p� 1).

4 This result is in contradiction with Figure 2 of Ref. [27], on which the signal
exhibited a second minimum corresponding to a second maximum of the normalized
second moment within GPA. But the condition for the magnetization survival up
to the echo time was not taken into account in [27].
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As the second moment itself, this expression is independent of h up to the order
p3/2. It is important to stress, however, that the slow-diffusion approximation
(36) is applicable only for relatively small h. When h is large enough, higher-
order corrections in p can become dominant. To illustrate this idea, let us
consider again the Laplace transform (32) of the zeroth moment E{1}. In the
limit h→ ∞, one has

lim
h→∞

L[E{1}](s) =
1

s
− d

ψd(−s)
s

.

Its expansion for large s and the inverse Laplace transform yields

lim
h→∞

E{1} ' 1 − p1/2 2d√
π

+O(p).

Note that the term p1/2 was not present in Eq. (34). This relation is applicable
when p � 1 and h � 1/p. Surprisingly, in spite of this modification, the
normalized second moment is well represented by Eq. (36) even for very high
values of h (see Fig. 2).

In contrast, the normalization of the second moment by E{1} becomes im-
portant for the motional-narrowing regime. In fact, both the zeroth and sec-
ond moments exponentially decay for large p due to the factor e−pλ00 . Only
when h is strictly equal to 0, this factor vanishes as λ00 becomes 0. What
is remarkable that the exponential function e−pλ00 is factored out when the
diffusion-weighted signal is normalized by the reference signal, resulting in a
polynomial decay of the normalized second moment as p goes to infinity:

E{φ2/2}
E{1} ' ζ ′−1(h)

p
− 3ζ ′−2(h)

p2
,

where

ζ ′−k(h) = ζ−k(h)
λ00(λ00 + h(h− d+ 2))

2h2d
.

This is a specific feature of the rapid diffusion when each nucleus travels long
distances, exploring the whole confining domain. In this case, all the nuclei are
affected by surface relaxation in a more or less similar way, and the exponen-
tial decay of their magnetization is already represented by the zeroth moment
E{1}. The same exponential factor appears in the second moment, while more
subtle (polynomial) modifications are described by the coefficients ζ−1 and ζ−2

shown in Fig. 3. In other words, although surface relaxation yields spatially
inhomogeneous attenuation, its effect is averaged out by rapid diffusion of the
nuclei. On the other hand, the exploration of the motional-narrowing regime
(p � 1) in the present of strong surface relaxation (h � 1) is mostly inac-
cessible in experiments since the reference and diffusion-weighted signals are
both small due to the exponential factor in Eqs. (38) and (40).
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Fig. 3. The coefficients ζ−1 and ζ−2 as functions of the dimensionless surface relax-
ivity h for a slab (d = 1). Similar behavior is observed for a cylinder and a sphere
(not shown).

5.2 Time-dependent or apparent diffusion coefficient

If the Gaussian phase approximation holds, the effect of geometrical confine-
ment can be seen as effective “slowing” down of the diffusive motion by reflec-
tions on the boundary. In other words, the signal attenuation due to restricted
diffusion can formally be understood as an equivalent signal attenuation due to
free (unrestricted) diffusion but with a time-dependent or apparent diffusion
coefficient (ADC). In this case, Hahn formula (1) can be written for arbitrary
temporal profile as [6]

E ∝ exp
[

−D(T ) γ2g2T 3 < (t1 − t2)>2

]

(for a steady bipolar profile, the time average < (t1 − t2) > 2
is equal to

1/12). Comparing this expression with Eq. (6), one can relate the ADC to the
normalized second moment:

D(T )

D
' E{φ2/2}/E{1}
p < (t1 − t2)>2

.

One can thus translate the above results for the normalized second moment
in terms of ADC.

5.3 The lowest eigenvalue of the Laplace operator

In the motional-narrowing regime, the reference signal (zeroth moment E{1})
and the diffusion-weighted signals (second moment E{φ2/2}) are completely
determined by four parameters: p, h, d, and the lowest eigenvalue λ00 of the
Laplace operator. This eigenvalue is the only implicit parameter that has to
be calculated as a function of h. For any bounded domain with a smooth
boundary, λ00 is an analytic monotonously increasing function of h, varying
from 0 (at h = 0, Neumann boundary condition) to some constant (at h = ∞,
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Fig. 4. The lowest eigenvalue λ00 of the Laplace operator in a slab (d = 1) as a
function of the dimensionless surface relaxivity h (solid line) and its truncated series
expansions (A.13) and (A.14) at small h (circles) and large h (pluses), respectively.
Similar behavior is observed for a cylinder and a sphere (not shown).

Dirichlet boundary condition).

We remind that λ00 = α2
00, where α00 is the first positive zero of some explicit

function y0(z) given by Eq. (16), (18), or (20) for a slab, a cylinder, and a
sphere, respectively. Using the properties of this function, one can calculate the
asymptotic behavior of the lowest eigenvalue in both limits, h→ 0 and h→ ∞
(see Appendix A.5). For a slab, Fig. 4 shows the eigenvalue λ00 as a function
of the dimensionless surface relaxivity h. One can see that its truncated series
expansions (A.13) and (A.14) provide very accurate approximations at small
and large h, respectively. Similar behavior is observed for a cylinder and a
sphere.

6 Conclusions

In this paper, we considered restricted diffusion of the nuclei under a linear
magnetic field gradient in simple confining domains (slab, cylinder, and sphere)
in the presence of surface relaxation. The macroscopic spin-echo signal as a
function of the normalized gradient intensity (parameter q) was proportional
to the characteristic function of the random dephasing φ of an individual
nucleus. According to the multiple correlation function approach, the moments
of this random variable were expressed in terms of two governing matrices B
and Λ defined through the Laplace operator eigenbasis.

It is worth noting the crucial points allowed us to obtain exact and explicit
relations for the zeroth and second moments:

(1) The internal symmetries of the three considered geometries led to explicit
representation of the matrix B in terms of the Laplace operator eigen-
values only. Performing the Laplace transforms, any moment E{φn/n!}
can be written as a multiple sum of products of fractions containing the
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eigenvalues.
(2) The eigenvalues are related to the zeros of explicitly known analytic

functions. Using the Laplace transform summation technique, the above
multiple sums can be expressed through the only function ψd(s) and its
derivatives.

(3) A technical point is that all the derivatives of the function ψd(s) can be
expressed through ψd(s) itself. As a consequence, all the quantities of
interest can be expressed through ψd(s), allowing automated procedure
for their symbolic computation.

Several physical consequences were deduced. In the slow-diffusion regime, the
second moment expansion in half-integer powers of the dimensionless diffusion
coefficient p was calculated up to the power p3/2. For antisymmetric temporal
profiles, the first two terms of this expansion (p and p3/2) were found to be in-
dependent of the dimensionless surface relaxivity h (this dependence appeared
in terms p2 and higher), in agreement with the classical results. The condition
f(1 − t) = −f(t) would thus be preferable to diminish the effect of surface
relaxation on measurements of the time-dependent diffusion coefficient D(t).
If this condition is not satisfied, the surface relaxivity appeared in the term
of order p3/2. The use of non-antisymmetric temporal profiles would then be
preferable to extract the surface relaxivity ρ from the short-time asymptotic
behavior of D(t).

In the motional-narrowing regime, surface relaxation led to an exponential
decay of the reference and diffusion-weighted signals as functions of p. The
decay rate was determined by the lowest eigenvalue λ00 of the Laplace oper-
ator which was strictly positive for any h > 0. In contrast, the normalized
second moment exhibited only polynomial decrease with p, as in the classical
case without surface relaxation. Its dependence on h was represented by two
coefficients ζ−1(h) and ζ−2(h) which were explicitly computed for simple ge-
ometries: slab, cylinder, and sphere. The obtained asymptotic expansions in
the slow-diffusion and motional-narrowing regimes provided accurate approxi-
mation for the second moment even for strong surface relaxation. Higher-order
moments can in principle be treated in a similar way, but a systematic com-
putational technique is required to operate efficiently with multiple sums and
integrals.
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A Laplace transform summation technique

Simple algebraic dependences (17, 19, 21) of the matrix elements Bnk,n′k′ on the
eigenvalues λnk for three simple geometries (slab, cylinder, sphere) imply that
any correlation function E{Xt1 ...Xtn} can be written as a sum of products of
fractions containing the eigenvalues. Using the Laplace transform summation
technique, one can reduce the computation of these sums to explicit algebraic
relations. In this Appendix, we illustrate this technique by computing and
analyzing the second moment.

A.1 Basic summation formulas

The computation is based on a simple fact that the sum

Θ(j)
n (s1, ..., sj) ≡

∞
∑

k=0

1

s1 − λnk

...
1

sj − λnk

can be recurrently reduced to

ηn(s) ≡
∞
∑

k=0

1

s− λnk

by a simple algebraic transformation:

Θ(j)
n (ξ1, ..., ξj) =

Θ(j−1)
n (ξ1, ..., ξj−1) − Θ(j−1)

n (ξ1, ..., ξj)

ξj − ξj−1
.

Starting from Θ(1)
n (ξ) ≡ ηn(ξ), one gets

Θ(2)
n (ξ1, ξ2)=

ηn(ξ1) − ηn(ξ2)

ξ2 − ξ1
,

Θ(3)
n (ξ1, ξ2, ξ3)=

1

ξ3 − ξ2

(

ηn(ξ1) − ηn(ξ2)

ξ2 − ξ1
− ηn(ξ1) − ηn(ξ3)

ξ3 − ξ1

)

,

Θ(4)
n (ξ1, ξ2, ξ3, ξ4)=

1

ξ4 − ξ3

(

1

ξ3 − ξ2

[

ηn(ξ1) − ηn(ξ2)

ξ2 − ξ1
− ηn(ξ1) − ηn(ξ3)

ξ3 − ξ1

]

−

− 1

ξ4 − ξ2

[

ηn(ξ1) − ηn(ξ2)

ξ2 − ξ1
− ηn(ξ1) − ηn(ξ4)

ξ4 − ξ1

])

.

Differentiation of these relations with respect to the variables ξ1, ..., ξj further
extends the class of analytically computable sums.
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A.2 Application to slab, cylinder, and sphere

As one will see in the next subsections, the computation of the second moment
can be reduced to algebraic expressions containing the functions η0(s) and
η1(s) and their multiple derivatives. For three basic geometries, these functions
were related by Eqs. (29) and (30) to the function ψd(s) depending only on
the space dimension d. Moreover, the derivative ψ′

d(s) can also be expressed
in terms of ψd(s) itself:

ψ′
d(s) =

1

2s
− d

ψd(s)

2s
+
ψ2

d(s)

2
.

As a result, any algebraic sum over the eigenvalues λ0k and λ1k can be ex-
pressed through the function ψd(s). This is a crucial computational simplifi-
cation allowing an automated symbolic analysis. The following properties of
the function ψd(s) are useful:

ψd(s) '
1

d
− s

d2(d+ 2)
+

2s2

d3(d+ 2)(d+ 4)
+O(s3) (s→ 0),

ψd(λ0k) =
h

λ0k
, ψd(λ1k) =

−1

h− d+ 1
.

In general, one can use the recurrent relations between Bessel functions (or
spherical Bessel functions in 3D) to express any function ηn(s) with n > 0
through ψd(s):

ηn(s) =
(h− n− d+ 2) −

[

s+ (2n + d− 2)(h− n− d+ 2)
]

ψ
(n)
d (s)

2s
[

1 + (h− n− d+ 2)ψ
(n)
d (s)

] , (A.1)

where the function ψ
(n)
d (s) can be defined by the following recurrent relation

for n ≥ 1

ψ
(n+1)
d (s) ≡ 2n+ d− 2

s
− 1

s ψ
(n)
d (s)

,

and ψ
(1)
d (s) ≡ ψd(s). Note that the functions ηn(s) with n > 1 are not defined

for d = 1 so that Eq. (A.1) is useless in this case.

A.3 Computation of the triple sum

If one introduces

p̃1 = pt1, p̃2 = p(t2 − t1), p̃3 = p(1 − t2), (A.2)
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the triple Laplace transform of the correlation function in Eq. (23) with respect
to these variables becomes

L3[E{Xt1Xt2}](s1, s2, s3) = 8h2
∑

k1,k2,k3

1

(λ0k1
+ h(h− d+ 2))(s1 + λ0k1

)
×

λ0k1
+ λ1k2

+ 2h(h− d+ 1)

(λ0k1
− λ1k2

)2

λ1k2

λ1k2
+ (h+ 1)(h− d+ 1)

×

1

s2 + λ1k2

λ0k3
+ λ1k2

+ 2h(h− d+ 1)

(λ0k3
− λ1k2

)2

1

(s3 + λ0k3
)(λ0k3

+ h(h− d+ 2))
.

This expression can be written as

L3[E{Xt1Xt2}](s1, s2, s3) =

8h2
∞
∑

k2=0

S(s1, λ1k2
)

λ1k2

λ1k2
+ (h+ 1)(h− d+ 1)

1

s2 + λ1k2

S(s3, λ1k2
),

(A.3)

where

S(s, λ) ≡
∞
∑

k=0

1

(λ0k + h(h− d+ 2))(s+ λ0k)

(

1

λ0k − λ
+

2(λ+ h(h− d+ 1))

(λ0k − λ)2

)

.

(A.4)
Using the summation formulas of Sec. A.1, one gets

S(s, λ) = −
(

[

1 + 2
(

λ+ h(h− d+ 1)
)

∂ξ3

]

Θ
(3)
0 (−α,−s, ξ3)

)

ξ3=λ

,

where α = h(h− d+ 2), and ∂ξ3 denotes the partial derivative with respect to
ξ3. Tedius but straightforward computation yields

S(s, λ) =
1

λ

(

σ0(s) +
σ1(s)

s+ λ
+

σ2(s)

(s+ λ)2

)

,

where

σ0(s)=
ψd(−s)

2h(h+ sψd(−s))
,

σ1(s)=
(s+ 2(h− d+ 1))ψd(−s) + h + 3

2(h+ sψd(−s))
,

σ2(s)=−s(1 + (h− d+ 1)ψd(−s))
(h + sψd(−s))

.

We stress again that the computation is mainly based on the algebraic form of
the sum (A.4). In turn, the geometry is specified by choosing the appropriate
function ψd(s).
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To complete the computation of the correlation function E{Xt1Xt2}, one has
to find the sum in Eq. (A.3):

L3[E{Xt1Xt2}](s1, s2, s3) =8h2
∞
∑

k=0

(

σ0(s1) +
σ1(s1)

s1 + λ1k
+

σ2(s1)

(s1 + λ1k)2

)

×

1

λ1k(λ1k + (h+ 1)(h− d+ 1))(s2 + λ1k)
×

(

σ0(s3) +
σ1(s3)

s3 + λ1k

+
σ2(s3)

(s3 + λ1k)2

)

.

Opening the brackets in this expression, one can express it through derivative
of the functions Θ

(n)
1 :

L3[E{Xt1Xt2}](s1, s2, s3) = 8h2



−σ0(s1)σ0(s3)Θ
(3)
1 (−s2,−sh, 0)+

σ0(s1)

(

[

σ1(s3) + σ2(s3)∂ξ4

]

Θ
(4)
1 (−s2,−sh, 0, ξ4)

)

ξ4=−s3

+

σ0(s3)

(

[

σ1(s1) + σ2(s1)∂ξ4

]

Θ
(4)
1 (−s2,−sh, 0, ξ4)

)

ξ4=−s1

−
([

σ1(s1)σ1(s3) + σ1(s1)σ2(s3)∂ξ4 + σ1(s3)σ2(s1)∂ξ5+

σ2(s1)σ2(s3)∂ξ4∂ξ5

]

Θ
(5)
1 (−s2,−sh, 0, ξ4, ξ5)

)

ξ4=−s1, ξ5=−s3



,

(A.5)

where sh = (h + 1)(h − d + 1). Although too cumbersome, the resulting ex-
pression is exact, and it can be explicitly found in terms of the function ψd(s).
In the limit h→ 0, it takes much simpler form

L3[E{Xt1Xt2}](s1, s2, s3) =
[d(d+ 2) − (d− 1)s2]ψd(−s2) + s2 − (d+ 2)

(d+ 2)s1s
2
2s3[1 − (d− 1)ψd(−s2)]

.

The inverse Laplace transforms with respect to s1 and s3 are trivial. Using
the expansion (33) of the function ψd(−s2) in the limit s2 → ∞, one finds

L[E{Xt1Xt2}](s2) =
1

(d+ 2)s2

− 1

s2
2

+
1

s
5/2
2

+O(s−3
2 ) (h = 0).

Its inverse Laplace transform yields

E{Xt1Xt2} =
1

(d+ 2)
− p(t2 − t1) + p3/2 (t2 − t1)

3/2

Γ(5/2)
+O(p2) (h = 0).

Since the constant term vanishes after the time average, one gets the classical
asymptotic behavior of the second moment as p → 0 (see [6] and references
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therein):

E{φ2/2} = p < (t1−t2)>2
−p3/2 4

3
√
π

(

− < (t2−t1)3/2>
2

)

+O(p2) (h = 0).

In the next subsection, we consider the general case h > 0.

A.4 Slow diffusion regime

When h > 0, the analysis of the triple Laplace transform in Eq. (A.5) is more
tricky since all the variables s1, s2 and s3 go to infinity. Naively, one could try
first to compute the asymptotic expansion in powers of 1/s1, then expand its
coefficients in powers of 1/s2, and then in powers of 1/s3 (or vice-versa). If this
strategy was applicable, the inverse Laplace transforms with respect to s1, s2

and s3 might be calculated term by term. However, such a naive computation
fails as explained below. Hereafter, we propose a different method.

Since all the variables s1, s2 and s3 should tend to infinity simultaneously, one
can formally substitute si = αis (i = 1, 2, 3) in Eq. (A.5) and then consider its
asymptotic behavior as s → ∞ using Eq. (33) for the function ψd(−s). Once
the result is obtained, one restitutes the original notation si:

L3[E{Xt1Xt2}](s1, s2, s3) '
ζ̃0

s1s2s3

−




1

s1s
2
2s3

+ h

(

1

s2
1s2s3

+
1

s1s
2
2s3

+
1

s1s2s
2
3

)





+





1

s1s
5/2
2 s3

+ h

(

s
−5/2
2 − s

−5/2
1

s3(s1 − s2)
+
s
−5/2
2 − s

−5/2
3

s1(s3 − s2)
+

1

s1s2s
5/2
3

+
1

s
5/2
1 s2s3

)

+

h2

(

1

s
5/2
1 (s2 − s1)(s3 − s1)

+
1

s
5/2
2 (s1 − s2)(s3 − s2)

+
1

s
5/2
3 (s1 − s3)(s2 − s3)

)



+ ....

This expansion is truncated at the fifth cumulative power of s1, s2 and s3,
and the coefficient ζ̃0 depends on the geometry: ζ̃0 = 1/(d + 2). Looking at
this expression, it is clear why a separate asymptotic expansion failed. For
instance, if the last term was expanded in the limit s1 → ∞, one would get
a series of (s2/s1)

k so that the inverse Laplace transform with respect to s2

would be ill defined. In contrast, the triple inverse Laplace transform of this
expression is still well defined.

The inverse Laplace transform of the above relation is

E{Xt1Xt2} ' ζ0 −
[

p̃2 + h
(

p̃1 + p̃2 + p̃3

)

]

+
1

Γ(5/2)

[

p̃
3/2
2 +

h
(

(p̃1 + p̃2)
3/2 + (p̃2 + p̃3)

3/2 + p̃
3/2
1 + p̃

3/2
3

)

+ h2
(

p̃1 + p̃2 + p̃3

)3/2
]

+O(p2),
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with the notation (A.2). Their substitution leads to a simpler relation

E{φ2/2} ' p < (t1 − t2)>2
+

p3/2

Γ(5/2)

[

< (t2 − t1)
3/2>

2
+

h

(

<t
3/2
2 >

2
+ <t

3/2
1 >

2
+ < (1 − t1)

3/2>
2
+ < (1 − t2)

3/2>
2

)]

+O(p2)

since the time average of a constant vanishes. If the effective temporal profile
is antisymmetric, f(1 − t) = −f(t), the last four time averages compensate
each other. As a consequence, the dependence on the dimensionless surface
relaxivity h disappears in the above series expansion up to the order p3/2,
and one retrieves the classical result (see [6] and references therein). This
dependence is present in higher-order terms.

A.5 Motional-narrowing regime

In the motional-narrowing regime (p � 1), the exact relation (A.5) could
formally be expanded as si → 0, but the inverse Laplace transforms would be
ill-defined. This is equivalent to say that the series expansion of the exponential
functions in Eq. (23) is not applicable. To study this regime, it is convenient
first to calculate the time average, and then to perform the summation. For a
bipolar temporal profile f(t) in Eq. (37) with δ = 1/2, the direct computation
of the time average yields Eq. (39). We remind that pi denoted pλni,ki

and
that n1 = n3 = 0 and n2 = 1 in our calculation. The second moment is mostly
determined by the terms containing only the lowest eigenvalue λ00. So, the
terms with e−p2 or e−p2/2 can be omitted since p2 = pλ1,k2

is large. For the
remaining terms, one can distinguish four different cases, independently of p2:

• k1 = k3 = 0. In this case, Eq. (39) becomes

<e−p1t1−p2(t2−t1)−p3(1−t2)>
2
' e−pλ00

p2

(

p

λ1k2
− λ00

− 3

(λ1k2
− λ00)2

)

, (A.6)

and the contribution to the second moment is

Σ1 =
8h2e−pλ00

p2(λ00 + h(h− d+ 2))2

∞
∑

k=0

(

p

λ1k − λ00
− 3

(λ1k − λ00)2

)

×
(

1

λ1k − λ00
+

2(λ00 + h(h− d+ 1))

(λ1k − λ00)2

)2(

1 − (h+ 1)(h− d+ 1)

λ1k + (h + 1)(h− d+ 1)

)

.

(A.7)

Using again the Laplace transform summation technique, one writes this
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d = 1 (slab) d = 2 (cylinder) d = 3 (sphere)

li
m

it
h
→

0
(w

ea
k

re
la

x
at

io
n
)

λ
(1)
00 1 2 3

λ
(2)
00 −1/3 −1/2 −3/5

λ
(3)
00 4/45 1/12 12/175

λ
(4)
00 −16/945 −1/192 0

λ
(5)
00 16/14175 −1/640 −432/336875

λ
(6)
00 64/93555 31/69120 1728/21896875

ζ
(0)
−1 2/15 7/96 8/175

ζ
(1)
−1 −4/45 −23/768 −4/315

ζ
(0)
−2 17/315 11/512 83/7875

ζ
(1)
−2 −2504/42525 −31/2160 −43048/9095625

li
m

it
h
→

∞
(s

tr
on

g
re

la
x
at

io
n
)

λ∞
00 π2/4 5.783185963 π2

λ
(1)
00 −2 −2 −2

λ
(2)
00 3 2 1

λ
(3)
00 (π2/6 − 4) 2(λ∞

00 − 2)/3 2π2/3

ζ∞−1 8(15 − π2)/(3π6) (4 + λ∞
00)/(6(λ

∞
00)

3) (3 + 4π2)/(8π6)

ζ
(1)
−1 5 6 7

ζ∞−2
8(4π4−255π2+2220)

45π8

4((λ∞

00
)2−73λ∞

00
+376)

90(λ∞

00
)4

16π4−255π2+2655
360π8

ζ
(1)
−2 7 8 9

Table A.1
Coefficients in the series expansions (A.13) and (A.14) of λ00, ζ−1, and ζ−2 in powers
of h and 1/h as h → 0 and h → ∞, respectively (see also footnote 5).

contribution as

Σ1 =
8h2e−pλ00

p2(λ00 + h(h− d+ 2))2

[

p
∂2

s

2!
+ (4pα− 3)

∂3
s

3!
+

+ (4pα2 − 12α)
∂4

s

4!
− 12α2∂

5
s

5!

](

−η1(s) − shΘ
(2)
1 (s,−sh)

)

s=λ00

,

(A.8)

where α = λ00 + h(h − d + 1) and sh = (h + 1)(h − d + 1). The resulting
expression is exact but too cumbersome to be shown.

• k1 = 0, k3 > 0. Here the only term with e−p1 survives,

<e−p1t1−p2(t2−t1)−p3(1−t2)>
2
' e−pλ00

p2(λ00 − λ0k3
)(λ00 − λ1k2

)
, (A.9)
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and its contribution to the second moment is

Σ2 =
8h2 e−pλ00

p2(λ00 + h(h− d+ 2))

∑

k2; k3>0

1

(λ00 − λ0k3
)(λ00 − λ1k2

)
×

(

1

λ1k2
− λ00

+
2(λ00 + h(h− d+ 1))

(λ1k2
− λ00)2

)

λ1k2

λ1k2
+ (h + 1)(h− d+ 1)

×

1

λ0k3
+ h(h− d+ 2)

(

1

λ0k3
− λ1k2

+
2(λ1k2

+ h(h− d+ 1))

(λ0k3
− λ1k2

)2

)

.

(A.10)

The computation of this double sum is very similar to that of Sec. A.3,
with the only difference that the sum over k3 does not contain the first term
k3 = 0 (we do not present the details of this computation).

• k1 > 0, k3 = 0. Similarly, the only term with e−p3 survives:

<e−p1t1−p2(t2−t1)−p3(1−t2)>
2
' e−pλ00

p2(λ00 − λ0k1
)(λ00 − λ1k2

)
. (A.11)

Its contribution is identitical with Σ2 due to the symmetry of permutation
between k1 and k3.

• k1 > 0, k3 > 0. In this case, all terms are exponentially small and can be
omitted.

For large enough p, the second moment can thus be written with a very good
accuracy as

E{φ2/2} ' Σ1 + 2Σ2 =

(

ζ−1(h)

p
− 3ζ−2(h)

p2

)

e−pλ00 . (A.12)

In the last equality, the dependence on p was written explicitly as it appeared
in Σ1 and Σ2, while the two coefficients ζ−1(h) and ζ−2(h) and the eigenvalue
λ00 capture the dependence on h and d.

The explicit formulas for ζ−1(h) and ζ−2(h) are too cumbersome but exact.
What is more important is the asymptotic behavior of these coefficients in the
limits of weak (h → 0) and strong (h → ∞) relaxation. In the limit h → 0,
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one finds 5

λ00 =λ
(1)
00 h+ λ

(2)
00 h

2 + λ
(3)
00 h

3 + λ
(4)
00 h

4 + +λ
(5)
00 h

5 + λ
(6)
00 h

6 +O(h7)

ζ−1 =ζ
(0)
−1 + ζ

(1)
−1h+O(h2)

ζ−2 =ζ
(0)
−2 + ζ

(1)
−2h+O(h2)

(A.13)

where all the coefficients are given in Table A.1 for three simple geometries
(slab, cylinder, sphere). The limiting values ζ

(0)
−1 and ζ

(0)
−2 (without surface re-

laxation) were first found by Robertson and Neuman [3,7]. Note that the series
expansion of the lowest eigenvalue λ00 up to the sixth power of h was manda-
tory for accurate computation of the above expansions for the coefficients ζ−1

and ζ−2 as functions of h.

In the opposite limit h→ ∞, one has

λ00 =λ∞00
[

1 + λ
(1)
00 h

−1 + λ
(2)
00 h

−2 + λ
(3)
00 h

−3
]

+O(h−4)

ζ−1 =ζ∞−1

[

1 + ζ
(1)
−1h

−1
]

+O(h2)

ζ−2 =ζ∞−2

[

1 + ζ
(1)
−2h

−1
]

+O(h2)

(A.14)

with the coefficients in Table A.1 (note that similar notations are used for
both limits).
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