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The preparation of complex oxides by a conventional ceramic route requires a number of stages, in-
cluding homogenization of the powder precursors, compaction of the reactants, and finally prolonged 
heat treatment at considerably elevated temperatures under controlled oxygen fugacity [1]. One goal of 
modern materials research and development has been to identify simpler processing schemes that do 
not rely upon high-temperature treatments for inducing solid-state reactions [2]. In our recent work, a 
great effort has been directed towards the single-step mechanosynthesis of Fe2+-containig oxides (e.g., 
Fe2GeO4, Fe2SiO4) [3], Fe3+-containing spinels (Li0.5Fe2.5O4, NiFe2O4, MgFe2O4) [4-9], Al3+-contai-
ning spinels (MgAl2O4, ZnAl2O4, NiAl2O4) [10,11], and Sn4+-containing complex oxides of the type 
M2SnO4 (M = Ca, Zn) [12]. To the best of our knowledge, there are only a few reports available in the 
literature on the single-step synthesis of these compounds (see, e.g., Refs. [3-12] and references there-
in). In the present work, examples are presented of the mechanochemical reactions leading to the for-
mation of nanocrystalline complex oxides. Mössbauer spectroscopy is employed to follow the mecha-
nosynthesis route and to characterize the structural state of the resulting nanophases at the atomic level. 
 Fig. 1 shows the mechanically induced phase evolution of a 2Fe2O3 : 2Fe : 3GeO2 mixture [3]. 
XRD patterns clearly illustrate that with increasing milling time (tm), the diffraction peaks correspond-
ing to crystalline educts decrease in intensity, and after 2 h of milling, all XRD peaks detected above 
the background are due to the Fe2GeO4 phase (JCPDS PDF 25-359). 57Fe Mössbauer measurements 
show that with increasing tm, sextets corresponding to α-Fe2O3 and Fe are gradually replaced by a 
broad asymmetric doublet with a central shift of about 0.9 mm/s characteristic of Fe2+ ions. Thus, na-
nocrystalline iron germanate (average particle size D = 11 nm) is the product of the following mecha-
nochemical reaction: 2 Fe2O3 + 2 Fe + 3 GeO2 → 3 Fe2GeO4. The analysis of Mössbauer data revealed 
that the mechanosynthesized Fe2GeO4 exhibits a partly inverse spinel structure with a nonequilibrium 
cation distribution of (Fe0.67Ge0.33)[Fe1.33Ge0.67]O4 [3]. This is in contrast to the bulk (conventionally 
prepared) material that adopts the normal spinel structure of (Ge)[Fe2]O4, in which Ge4+ and Fe2+ are 
fully ordered at tetrahedral (A) and octahedral [B] sites, respectively [3]. 
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Fig. 1 (a) XRD patterns and (b) room-temperature 57Fe Mössbauer spectra illustrating the mechanosynthesis of Fe2GeO4 
from the Fe2O3 : Fe : GeO2 mixture. Milling times (tm) are indicated in the figure. Diffraction peaks of the mechanosynthe-
sized Fe2GeO4 spinel are denoted by Miller indices. 
 
 

 
 
Fig. 2 The mechanochemical reaction 2 CaO + SnO2 → Ca2SnO4 followed by (a) 119Sn MAS NMR and (b) 119Sn Mössbauer 
spectroscopy. 
 
The mechanosynthesis of a nanocrystalline Sn4+-containing complex oxide is illustrated in Fig. 2. The 
mechanochemical reaction 2 MO + SnO2 → M2SnO4 (M = Ca, Zn) represents a very convenient model 
reaction for studies of changes in the local structure during mechanosynthesis since the tin nucleus can 
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serve as a local probe in both NMR as well as Mössbauer measurements. In our work [12], 119Sn MAS 
NMR and 119Sn Mössbauer spectroscopy were employed to follow the mechanosynthesis of Ca2SnO4. 
Fig. 2a shows 119Sn MAS NMR spectra of the 2CaO : SnO2 mixture milled for various tm. The spec-
trum of the initial mixture shows a sharp resonance at − 604.5 ppm corresponding to the Sn atoms 
located in SnO6 octahedra in the crystal structure of SnO2. After tm = 0.5 h, a shoulder appears on its 
right side and a new peak appears at − 547.5 ppm, which is assigned to Ca2SnO4 [12]. After tm = 4 h, 
the spectrum is dominated by the peak of Ca2SnO4 and the peak of the SnO2 educt has disappeared 
completely. Note that a small peak at 614 ppm can be assigned to CaSnO3. Similarly, 119Sn Mössbauer 
spectroscopy revealed that with increasing tm, the singlet corresponding to SnO2 gradually evolves to a 
broad doublet that is well fitted by a superposition of two subspectra (Fig. 2b); a major one (93%) 
accounting for octahedrally coordinated Sn4+ in Ca2SnO4 and a minor one associated with the CaSnO3 
phase [12]. The broadened shape of Mössbauer and NMR spectral lines indicates the presence of a 
broad distribution of local structures around the Sn nuclei (deformed SnO6 octahedrons) in the mecha-
nosynthesized stannate. 
 Results obtained clearly demonstrate that a variety of nanocrystalline complex oxides can be syn-
thesized in a relatively short reaction time at room temperature in a one-step mechanochemical route 
[3-12]. This nonconventional approach offers several advantages over traditional processing routes, 
including low-temperature solid-state reactions, fewer processing steps, and suitability for the low-
cost, large-scale production of nanopowders. In this respect, the work, concerning the mechanochemi-
stry of oxides, also contributes to the search for novel sustainable production routes of functionally 
tailored nanomaterials. 
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