
diffusion-fundamentals   
The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application 
www.diffusion-fundamentals.org, ISSN 1862-4138; © 2005-2010  
 
 

Diffusion Fundamentals 12 (2010) 3  © R. Lechner 

 
 

Mechanism of Proton Conduction in Solid-State Protonic 
Conductors: Method and Results from Investigations by 

QENS Techniques  

 
Ruep E. Lechner,*,1 Goetz Schuck,2 Klaus Langer3 

 
1 Hohenzollernstraße 5b, D-14109 Berlin, Germany 

2 ETH Zürich, State Physics Laboratory, CH-8093 Zürich, Switzerland 
3 Institut für Angewandte Geowissenschaften, Technische Universität Berlin,  

Ernst-Reuter-Platz 1, D-10587 Berlin, Germany 
 

E-Mail: ruep.lechner@gmail.com 
 

 
Presented at the Bunsen Colloquium: Spectroscopic Methods in Solid State Diffusion and Reactions 
September 24th − 25th, 2009, Leibniz University Hannover, Germany 
 

 
The proton conduction mechanism in M3H(XO4)2 crystals has been employed as an example for dem-
onstrating, how such a mechanism can be broken up into a number of different types of proton motion 
starting with internal and lattice vibrations at short times of the order of 10–13 s and ultimately leading 
to H+-diffusion on the 10–9 s to 10–8 s time-scale as required for proton conductivity. The central proc-
ess is the alternation between formation and rupture of H-bonds within the H-bonding network of the 
protonic conductor [1] (see Table 1).  
 

Table 1: Proton motions in the proton conducting phase of  Rb3H(SeO4)2 at 500 K 

 
type of motion 

energy range 
(HWHM) 

(µeV) 
correlation time  

(s) 
   

lattice and internal vibrations 3000 (to 105) 10 –13 (to 10 –15) 

fast trigonal “reorientation”, i.e. localized diffusion 
(LD) 1200 10–12 

OH-librations, overdamped ~300 4 × 10–12 

H-bond formation and breaking, i.e. intracrystalline 
chemical reaction (ICCR) ~30 4 × 10–11 

H-bond transfer, asymmetric, i.e. proton transfer to 
neighbouring oxygen center (PTOC)  ~5 3 × 10–10 

H+-Diffusion, symmetr. H-bond (TD) ~0.3 4 × 10–09 

 
 
The method allowing us to isolate specific types of motion from the rather complex motional mecha-
nism is based on the variation of experimental observation time in a series of measurements, where 
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suitable energy resolution widths are chosen [2]. This technique permits us to perform scans along the 
Fourier time axis, where specific motions are discovered and measured separately in suitable time 
windows. From the results the total scattering functions including all motions are then reconstituted on 
the energy axis and on the time axis. As an example, localized diffusive proton motions in the solid-
state protonic conductor Rb3H(SeO4)2 were studied at 500 K with quasielastic incoherent neutron scat-
tering on the 10–11 s to 10–10 s time scale. The experimentally determined model-independent “appar-
ent” EISF was used as a guidance to deduce an approximate proton density distribution for this time 
interval, as the starting point for developing the trigonal-asymmetric hydrogen bond (TAHB) model 
[3]. 

The incoherent scattering function of this model was derived and the resulting theoretical EISF 
compared to the experiment. The obtained values of the model parameters, the order parameter η and 
the jump distance R21, indicate that – in spite of its very fast relaxational motions in the neighbourhood 
of the oxygen – the proton essentially remains bonded to a selenate top oxygen for a period of the or-
der of at least 10–10 s. Nevertheless, but with rather low probability, it is also making brief steps into 
the hydrogen bridge in the 10–11 s to 10–10 s time interval. We interpret these observations as the conse-
quence of a dynamic disorder in the form of an intracrystalline chemical equilibrium reaction (Fig. 1): 
alternation between the association of the monomers [HSeO4]1– and [SeO4]2–, resulting in the dimer 
[H(SeO4)2]3− (H-bond formation) and the dissociation of the latter into the two monomers (H-bond 
breaking).   
 
   

           
 
 

[H(SeO4)2]3−    [SeO4]2− + [H(SeO4)]1− 
 
 

Fig. 1  Intracrystalline chemical reaction equilibrium [5,6] in trigonal Rb3H(SeO4)2. 
 
 
At 500 K, this reaction has a rather asymmetric character: The average life-time of the dimer is about 
20 times shorter than that of the monomers. 
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