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Abstract

Adolph Fick’s original diffusion experiments used two vessels containing water and
salt to establish a steady-state concentration gradient that demonstrated the validity
of what is now called Fick’s second law of diffusion. The first vessel had a cylindrical
shape creating a linear gradient. The second vessel was shaped like a funnel having
a correspondent variable flow area. Using Fick’s second law, general solutions for any
shape of the vessel are developed for steady diffusion in two and three dimensions, re-
spectively. Two dimensional random walks were performed via computer simulations,
and the numerical results are compared to continuum theory. Provided that a suffi-
ciently large number of steps are simulated to allow the random walkers to traverse the
total diffusion path, good agreement is achieved between discrete “molecular” motions
(random walk) and the classical continuum description provided by scalar field theory
(partial differential equations).
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1 Introduction

The initial verification of Adolph Fick’s second law was provided by his now

famous salt diffusion experiments [2]-[8], [15]-[19]. Fick placed a layer of

sodium chloride (NaCl) crystals at the bottom of two differently shaped ves-

sels connected to large reservoirs of fresh water. Although his experiments

were never described in complete detail, or the scheme explicitly sketched out,

the authors assume that they resemble the vessels shown in Figure 1. As the

experiment progressed and salt molecules diffused up and out of the vessel,

replaced by water molecules, the connected reservoirs at one end of the dif-

fusion vessels were refreshed steadily with pure water to establish eventually

a steady-state concentration gradient [2]-[8], [15]-[19]. Fick’s measurements

[2]-[8] of the NaCl concentration profile, conducted via densitometry, showed

that a right-circular cylindrical funnel yields at steady-state a linear variation

of density versus distance down the funnel. See Figure 1 left. The conical fun-

nel resembling the one shown in Figure 1, right, yielded instead a non-linear

(concave downward) plot of density versus distance. These experimental re-

sults matched Fick’s theoretical calculations, supporting the validity of his

now famous second law of diffusion. Moreover, it was through quantitative

comparison of these experiments with theory that Fick introduced the indis-

pensible concept of the interdiffusion coefficient.

Figure 1: Left: Fick’s cylindrical vessel. The wide cylinder above the cylindrical diffusion
vessel represents the fresh water reservoir. Right: Fick’s funnel-shaped vessel. The wide
cylinder above the conical diffusion vessel represents the fresh water reservoir.
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2 Solutions to Fick’s second Law

2.1 Theoretical Approach

Analytical solutions for the concentration field may be developed easily for

steady-state diffusion in two or three dimensions. The derivation of these

formulae begins with the linear 2nd-order differential equation for the conser-

vation law now known as the Fick-Jacobs equation [1], which accounts for a

variable cross-sectional area for diffusion [2]-[14].

In both two spatial dimensions, R2, and in three spatial dimensions, R3, the

Fick-Jacobs equation may be expressed in the linear partial differential form

D

[
∂2C

∂x2 +
∂C

∂x

1

A(x)

dA

dx

]
=

∂C

∂t
. (1)

In Eq.(1), C(x, t) is the concentration of of the salt at location x and time t,

A(x) is the locally varying cross-sectional area through which diffusion occurs,

and D is the interdiffusion coefficient for salt and water at the temperature

and pressure at which the experiment is carried out. As time approaches

infinity, the change in concentration with time vanishes, ∂C/∂t→ 0, and

Eq. (1) simplifies to the linear ordinary differential equation
[
d2C

dx2 +
dC

dx

1

A(x)

dA

dx

]
= 0, in both R2and R3. (2)

As indicated, Eq. (2) remains valid for vessels requiring two and three dimen-

sions to describe their diffusion flow geometry.

We create a dimensional frame of reference convenient both for the remainder

of the derivation and for the two-dimensional simulations to be discussed. As

shown in Figure 2, a cross section of Fick’s funnel-shaped vessel is chosen

with a running variable, x. The “two dimensional” vessel has a constant

thickness, h, into and out of the page, and a variable half-width, w(x), that

increases linearly from its minimum value of w0 at x = 0, denoting the

upper diffusion boundary with pure water, to a maximum value of wmax, at
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x = xmax, denoting the location of the diffusion boundary with the layer of

salt crystals. In the case of a cylindrical-shaped vessel, the half-width, w,

remains constant over the length of the vessel, from the layer of salt crystals

to the fresh water port. For the “three dimensional” conical vessel, w(x)

instead is taken equal to the radius, R, of the changing circular cross-section

for diffusion, and the symbol h is no longer needed.

Figure 2: Frame of reference for theoretical calculations and random walk simulations.

Analytical solutions valid in R2 and R3 are now sought for the steady-state

concentration fields, C(x) and C(R), of salt in water throughout the variable

section of the diffusion vessels (0 ≤ x ≤ xmax). The variation of the area

within the vessel in which diffusion occurs needs to be taken into account

explicitly, in order to solve for these concentration fields.

In two dimensions the area is A = w(x) × h. In three dimensions the area is

A = πR2 = πw2(x). Thus, when these area functions are differentiated and

substituted into Eq. (2), the differential equation corresponding to diffusion

in the “two dimensional” vessel contains the coefficient −1, whereas the three-

dimensional case contains the coefficient −2. This difference in coefficients

is seen in Eq. (3) for R2 and Eq. (4) for R3, following the conversion of the

equations to first-order differential equations in which V = ∂C/∂x. The

4
© 2006, R. DiDomizio
Diffusion Fundamentals 4 (2006) 2.1 - 2.14



variable m is the slope of the outer vessel wall. In R2 one obtains

dV

V
=

−m

w0 + mx
dx, (3)

whereas in R3 one obtains

dV

V
=

−2m

w0 + mx
dx. (4)

Integrating Eq. (3) and (4) twice leads to Eq. (5) for R2 and Eq. (6) for R3.

The parameters αi and γi (i = 2, 3) are the constants of integration in R2

and R3, respectively. Thus, in R2, the concentration field is

C(x) =
α2

m
log(w0 + mx) + γ2, (5)

whereas in R3, the concentration field is

C(R) = −α3

m
(w0 + mx)−1 + γ3. (6)

2.2 Boundary Conditions

The boundary conditions for the steady-state diffusion fields, which are iden-

tical in both cases, can now be specified. After a sufficiently long time, the

layer of salt crystals at the base of the vessels will fix the concentration of the

solution at its equilibrium solubility, Cmax, when equilibrated at some fixed

temperature and pressure. The following constant concentration boundary

condition is thereby imposed on the system. In both R2 and R3, the saturated

layer of salt crystals insures that

C(xmax) = Cmax, (x = xmax). (7)

The presence of a large water reservoir of pure water connected to the vessels

at x = 0, which is continuously replenished to remove any traces of salt

that diffuse out of the vessels, establishes the second constant concentration

boundary condition on the diffusion field. In both R2 and R3, the pure water

reservoir insures that

C(0) = 0, (x = 0). (8)
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2.3 Steady-state solutions to Fick’s Law in R2 and R3

The boundary conditions elucidated in Section 2.2 fix the integration con-

stants αi and γi, which when substituted back into the solution yield the

steady-state concentration fields. After a few steps of algebraic manipula-

tion and the substitution of the non-dimensional identities β ≡ wmax/w0,

and Z ≡ x/xmax, the solution for the steady-state concentration field in R2

can be written as Eq. (9), and the corresponding solution in R3 is Eq. (10),

namely,

C(x) − C(0)

Cmax − C(0)
=

1

log(β)
log(1 + (β − 1)Z), (9)

and

C(x) − C(0)

Cmax − C(0)
=

βZ
1 + (β − 1)Z . (10)

Equations (9) and (10) provide the desired expressions for arbitrary values of

the widths of w0 and wmax. By decreasing wmax while increasing w0, the shape

of the funnel vessel may be altered as follows: a) to one that has a narrow

opening at the pure water interface and a broad base where the salt layer is

placed; b) to one that has equal values, creating either a rectangular diffusion

channel in R2, or a right-circular cylindrical diffusion channel in R3; or c) to

one that has a broad opening at the pure water interface and a narrow base

where the salt layer is placed. Steady-state concentration plots calculated

from these analytical solutions are displayed in Figure 3 for seven different

funnel geometries. As shown in Equations 9 and 10, the fields depend only

on the ratios Z ≡ x/xmax and β ≡ wmax/w0. A concave down concentration

field occurs when wmax > w0. If wmax = w0, then the concentration profile is

linear in x. If wmax < w0, then the concentration field is concave up.

3 Random Walk Simulations in R2

The random walk simulation of the diffusion exchange of salt and water

molecules was conducted only in two dimensions for reasons of efficiency and
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Figure 3: Left: Continuum analytical solutions to Fick’s second law in R2 from Eq. (9).
Right: Continuum analytical solutions to Fick’s second law in R3 from Eq. (10). The
dimensionless parameter β describes the shape of the diffusion channel.

accuracy of the data, and reducing CPU time. The Matlab c©-based computer

code for these simulations was developed at Rensselaer Polytechnic Institute

[16, 17].

3.1 Simulation Rules

Our simulation was initiated by chosing the number of random walks to be

averaged, the number of steps comprising each walk, the step length, and

selecting specific values for wmax and w0. The results shown in this paper

were obtained for the fixed step length, λ—actually the standard deviation

of a Gaussian random process—which was fixed at λ = 0.1. Along with the

choice of λ = 0.1, the number of steps, n, was fixed at 10, 000. This choice

ensured that particles were able to make multiple trips over the full length

of the diffusion path, which was fixed at 'diff = 10. These choices assure

satisfaction of the steady-state requirement.

The Matlab c© code begins by randomly and uniformly distributing water

molecules within the rectangle defined by the height of the funnel vessel and

its maximum width, 2wmax. Each water molecule is placed randomly, without
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taking into account the current positions of any other water molecules. The

number of calls sent to the random number generator was set so that any given

unit area contains approximately 100 water molecules. Thus, if 2wmax were

the largest dimension of the diffusion channel, then it defined the width of

the simulation rectangle. However, if two times 2w0 were the largest channel

dimension, then this dimension was used to create the simulation rectangle.

For the case of a rectangular channel, which is defined as having a height of

10 units and a width of 2w0 = 2wmax = 1 unit, there are 1000 water molecules

present at the beginning of the simulation. Over the course of the simulation

the total number of molecules does not change, but their “identity” does,

as will be explained below. The identical procedure was used for tapered

Figure 4: Initial placement of water molecules as random walkers.

diffusion channels when wmax (= w0. Water molecules were placed randomly

and uniformly throughout the largest possible rectangle. All of the walkers

that lay outside the boundary defined by Eq. (4) were deleted, and only

walkers residing within the defined boundaries were tracked as the simulation

progressed. For the cases where wmax = 2w0 or w0 = 2wmax, the resulting

rectangle used in the initial placement of the water molecules has a width

of 2 units and a height of 10 units. The result of this rule was that 2000

points were placed in the rectangle. After the boundary lines were drawn,
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approximately 500 points were eliminated, leaving approximately 1500 points

in the diffusion simulation. Figure 4 shows the initial placement of the water

molecules when w0 is twice as large as wmax.

Figure 5: Simulation results for the steady-state distribution of salt and water molecules
diffusing through a rectangular vessel, β=1.

By placing the walkers initially within a rectangle, and then tracking only the

walkers residing within the defined boundaries of the diffusion channel, each

funnel had approximately the same density of uniformly distributed walkers.

Once the simulations started, every walker moved once per cycle, without

taking into account the positions of the other walkers. When a walker of

either salt or water encountered the horizontal boundary located at wmax,

the walker was deemed to be salt molecule. By contrast, if a salt molecule

diffused all the way to the top of the diffusion channel and encountered the

boundary located at w0, the salt molecule would be “converted” into a water

molecule. In addition to changing the nature of the molecules that encounter

the limiting horizontal boundaries, w0 and wmax, these boundaries also act as

perfectly reflecting diffusion barriers. Thus, the transformed walkers do not

accumulate at either horizontal boundary. The side boundaries also act as

reflecting barriers for both water and salt molecules. Both types of walkers

underwent elastic collisions with the side walls and were reflect back into the

diffusion channel without changing from one molecular type to the other.
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Figure 6: Left: Steady-state simulation of diffusion in a tapered channel, β = 8. Right:
Steady-state simulation of diffusion in a tapered channel, β = 4.

Figure 7: Left: Steady-state simulation of diffusion in a tapered channel, β = 1/8. Right:
Steady-state simulation of diffusion in a tapered channel, β = 1/4.

Because the simulation explicitly took into account what happens when one

type of walker encounters the opposing boundary, it was unnecessary to con-

trol the step length in order to eliminate so-called edge effects. Selection

of the step length, λ, became important, however, when determining the

number of steps needed in the random walk to yield accurate results, which

complied with the required steady-state diffusion conditions. The larger the

step length, the fewer the number of steps in the random walk that were re-

quired to achieve sufficient walker displacements. Initial testing showed that

a step length of λ = 0.1, combined with n = 10, 000 steps in the random walk,

yielded consistent steady-state results of sufficient accuracy for the present
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purposes.

3.2 Simulation Results

Figures 5, 6, and 7 show the results of several simulated cases for different

diffusion channel contours. These data plots show the parameter, β, estab-

lishing the channel shape, and the steady-state position of all of the molecules

in the final walk of the 100 trials used to compute the average concentration.

In these plots, the blue points represent water molecules and the red points

represent salt molecules. In order to keep track of the concentration gradient

Figure 8: Theoretical predictions and simulation of interdiffusion in two dimensions, corre-
lated for different channel shapes (β ratios). The smooth lines are predictions derived from
continuum theory, Eq. (9). The jagged lines represent simulation data based on random
walk trials.

accurately as the number of steps in the random walk increased, each funnel-

shaped diffusion path was divided into 50 horizontal bins. Thus, the plot of

normalized concentration, Figure 8, shows the number of particles in a bin

0.2 wide as a single point. These points are then connected by straight-line

segments to give the jagged lines seen in Figure 8. Each of the simulation

results shown as bold lines was produced by averaging 100 walks. The simu-

lation curves are compared to the continuum theoretical results for the same

β ratio, shown by the corresponding smooth curves. Figure 8 clearly shows
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Figure 9: Random walk simulation results with error bars for different β ratios.

the alteration of the concentration field with respect to the vessel’s shape.

The simulation results agree with the continuum theoretical results for ev-

ery case investigated. Averaging more than 100 walks for each funnel shape

would doubtless improve the agreement between the simulation and theoret-

ical results.

The error bars associated with the average of 10,000 random walks are shown

in Figure 9. Both the continuum theoretical predictions and the simulations

remain within one standard deviation, considering that the error bars repre-

sent a relative error of approximately ±10% for each point. It is especially

important to note that steady-state conditions for diffusion must be met be-

fore the random walk data yield an acceptable approximation to the analyt-

ical predictions based on steady-state continuum theory. For this particular

simulation, the steady-state condition was achieved only after the particles

had diffused several times from one end of the tapered channel to the other.

Even after averaging one hundred 5000 step walks, the random walkers rep-

resenting salt molecules just reached the position denoted as w0. As a result,

the steady-state condition had not yet been achieved. It takes approximately

n = 10, 000 steps with a step length λ = 0.1 to achieve the steady-state con-

dition. Only then does the random-walk simulation of steady-state diffusion

provide sufficiently good agreement with the analytical continuum results.
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4 Conclusions

Fick’s second law was checked numerically by simulating his famous funnel

experiments of 1855, where the diffusive flow area can vary. Following the

derivation of Fick’s second law in two and three dimensions, a random walk

simulation in two dimensions was used to verify two-dimensional continuum

theoretical results. These results show that with a sufficiently large num-

ber of trials, lengthy random walks can in fact be used to simulate with

controlled errors the results obtained from Adolf Fick’s original salt experi-

ments. Steady-state continuum diffusion solutions compare remarkably well

with random walk statistics. To obtain accurate simulation results, steady-

state conditions must be achieved in the simulations. This requires that the

molecules travel the length of the diffusion channel at least once. The step

length, λ, and number of individual steps, n, can be adjusted to ensure that

this condition is met. The larger the step length, the fewer is the number

of steps needed to achieve steady-state diffusion conditions. As with any

random walk simulation, the more trials that are included in reporting the

average, the better is the agreement obtained with continuum theory.
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