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Abstract

By using simple extended mapping models showing chaotic diffusion, non-
perturbative non-Gaussian characteristics of diffusive motion are examined
in the framework of the large deviation statistical theory. Furthermore, by
rigorously solving the large deviation statistical quantities, it is found that
the same type of anomalous, complex control parameter dependence as that
for the diffusion coefficient reported by Klages and Dorfman is also observed
in the large deviation statistical quantities such as the weighted average, the
generalized diffusion coefficient and the generalized power spectrum densities.

1 Introduction

Diffusion is one of the most important and widely observed phenomena not only in
statistical and chemical physics but also in other fields of science and engineering.
For a statistically steady random variable u;, the variable X; generated by the
dynamics

Xt+1:Xt+ut7 (t:07172737) (1)

shows a diffusive motion. Namely, the variance of X;, 02(t) = ((X; — Xo — (u)t)?),
(--+) being the ensemble average of - - -, obeys the law o2 (t) ~ 2Dt for large t. The
diffusion coefficient D is a key quantity to characterize the statistics of the diffusive
process.

The diffusion process is observed also in chaotic dynamics [1]. Namely, if the
quantity u; is generated by the chaotic dynamics and has the mixing property, i.e.,
the time correlation function of w; decays in an appropriately fast way, the quan-
tity X; shows diffusive statistics. This phenomenon is called either deterministic
diffusion or chaotic diffusion and is one of the eminent characteristics in nonlinear
dynamics.

In order to study the diffusive statistics, the diffusion coefficient is quite impor-
tant. This is because the diffusion coefficient is directly related to the asymptotic

©2005, Syuji Miyazaki
Diffusion Fundamentals 3 (2005) 9.1 - 9.34



form of the maximum region of the probability density for the variable X; as

P(X) ~ exp [—s (%) t} , 2)

S L ? 3

(W) = -5 (u—{u) 3)

for large ¢ [2]. Because of the central limit theorem, this Gaussian form holds

even if the variable u, is very different from the Gaussian random variable. The

diffusion coefficient D thus cannot describe the non-Gaussian statistics of X; in an

appropriate manner. The non-Gaussian characteristics, which are observed typically

in the tail regions of P,(X), are analyzed in the framework of the large deviation

statistical theory [2]. This analysis leads to the concept of the “fluctuation of

diffusion coefficient”[2]. The generalized diffusion coefficient, which is explained in

detail in Sec. II, can describe various statistics of X; and u,; including non-ballistic
and ballistic motions in a clear-cut way.

On the other hand, Klages and Dorfman recently reported a complex, anoma-
lous control parameter dependence of diffusion coefficients, taking simple chaotic
mapping dynamics showing diffusive motion (fractal diffusion coefficient) [3]. This
complex behavior reflects the existence of infinitely many unstable limit cycles in
the state space.

As explained above, there are two interesting problems in the statistical char-
acterization of chaotic diffusion, large deviation characterization and the complex
control parameter dependence of statistical quantities for diffusive motion. The
fundamental purpose of the present paper is to examine chaotic diffusive motion
from the viewpoint of large deviation statistics and the complex control dependence
of statistical quantities. Particularly, we pay attention to how the complex control
parameter dependence is observed in the large deviation statistical quantities.

The present paper is organized as follows. In Sec. II, we briefly review the
formalism of the large deviation statistical analysis of diffusive motion to describe
non-perturbative non-Gaussian characteristics of diffusive motion. Furthermore,
the formulae to determine the statistical quantities of large deviation statistical
quantities in chaotic dynamics are summarized. In Sec. III, taking a simple map-
ping model to generate chaotic diffusion, we show how the formulae to statistical
quantities work. In Sec. IV, extending the chaotic mapping model given in Sec. II,
we study how the control parameter affects the diffusion characteristics such as the
conventional diffusion coefficient and the large deviation statistical quantities. It
will be found that for the present models a complex control parameter dependence
of diffusion coefficients is observed, and we will find that such an anomalous control
parameter dependence is observed also in the large deviation statistical quantities.
By listing the results obtained in the present paper, we give a conclusion in Sec. V.
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2 Description of non-Gaussian fluctuation

2.1 Framework of large-deviation statistics

Let us briefly describe large deviation statistics following the series of studies by
Fujisaka and his coworkers [4, 5, 6, 7, 8, 9]. Consider a stationary time series u.
The average over time interval T is given by this formula,

t+T
ar(t) = %/t usds (4)

which distributes when 7' is finite. When 7" is much larger than the correlation time
of u, the distribution Pr(u) of coarse-grained u is assumed to be an exponential
form Pr(u) oc e °W?" Here we can introduce the fluctuation spectrum S(u) as

S(w) =~ Jim - log Pr(u) (S(u) > 0) (5)

T—o0

When T is comparable to the correlation time, correlation cannot be ignored, so
non-exponential or non-extensive statistics will be a problem, but here we do not
discuss this point further. Let ¢ be a real parameter. We introduce the generating
function Z, of T' by this definition.

Z,(T) = (e?r) = /jo Pr(u)e?™™du (6)

We can also here assume the exponential distribution and introduce characteristic
function ¢(q) as

6(a) = Jim_—log Z,(T) (7

T—o0
The Legendre transform holds between fluctuation spectrum S(u) and characteristic
function ¢(q), which is obtained from saddle-point calculations.

dS(u)
du

=q, ¢(q) =—5S(u(q)) + qu(q) (8)

In this transform a derivative d¢/dgq appears, and it is a weighted average of ur,

apedTur
u(q) = ¢'(q) = Tlgﬂoo % = Tli_r)ﬂoo@T; QT 9)

so we find that ¢ is a kind of weight index. We can also introduce susceptibil-

du(q)

ity x(q) = e as a weighted variance. These statistical structure functions

S(u), d(q),u(q), x(¢g) constitute the framework of statistical thermodynamics of tem-
poral fluctuation, which characterize static properties of chaotic dynamics. In order
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to consider dynamic properties, we can introduce this generalized spectrum density
as a weighted average of normal spectrum density.

1 <‘foT[u{t + 5} - U(q)]e_iwsdsr engT>
et Z,(T) -

2.2 Generalization of diffusion coefficients

Fujisaka and Inoue applied this large-deviation statistical analysis to diffusion pro-
cesses [2]. In the following, we restrict u(g) to weighted averages of velocity obtained
from a diffusion process. Equation (9) leads to

W(g) = Jim L {(a— 0~ u(@)?a), (10)
where x; denotes position at time ¢. In Egs. (9) and (10), u(0) (= ¢'(0)) and
u'(0) (= ¢"(0)) are respectively identical to the drift velocity vy and 2D, where
D is the diffusion coefficient. Therefore, u(g) may be regarded as the generalized
drift velocity (order-q drift velocity). Furthermore, the generalized variance (order-q
variance) defined by

oo (t) = ((x — o — u(@)t)*;q), = t* (@ — u(q)t)*;q), , (11)

asymptotically takes the form
o2(t) = 2D,t, (12)

q

for large t, where

_ oy %@ _ @) _ x(@) 1

Dy = = 2 2~ 25"(u(q)’

(13)

q

By introducing the generalized (order-q) time correlation function by

us — u(q))(uo — u(g))e”™™)

T ((

Cq(s) - tli)rgo Zq(t) ’ (14)

the generalized (order-q) diffusion coefficient is expressed as
D, = / C,(s)ds, (15)

0
where D,—¢ is identical to the ordinary diffusion coefficient.
Applying the cumulant expansion to Z,(t), ¢(q) is expanded as
1

$(a) = ¢'(0)q + 5 ¢"(0)* (16)
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provided that |g| is much less than the convergence radius go of the expansion. This
immediately leads to

ula) = ¢'(0) + 6" (0)g (17)
sw =200 o, (18)

The Gaussian approximation holds for u satisfying |u — ¢'(0)|/¢'(0) < qo. If u,
is Gaussian, the go = +o0o and (18) holds for any u. Therefore, the non-Gaussian
property causes the g-dependence of Dy, which is the origin of the existence of an
infinite number of statistical characteristics of diffusive motion.

2.3 Relationship between generalized Frobenius-Perron op-
erators and statistical structure functions for one-dimensional
mapping systems

Let us consider the case of a one-dimensional map. Let u[z,] be a unique function
of x, which is governed by the map z,+1 = f(x,). The question is how to obtain
statistical structure functions and generalized spectral densities of u. The answer
is to solve eigenvalue problems of a generalized Frobenius-Perron operator. As we
mentioned before, the characteristic function ¢(q) is given by the asymptotic form of
the generating function Z,(n) in the limit of n — oo corresponding to the temporal
n—1
coarse-grained quantity u, = — Z u[Zj+m], where we assume an exponential fast
n
j=0
decay of time correlations of u. A generating function can be expressed in terms of
invariant density,

Zy(n) = (e®™)

[r@en 0> ulF@] | dr
=0

_ / H? p* () dr, (19)

where the generalized Frobenius-Perron operator H, is defined and related to the

original one as

Gy,
£ (y;)l

for an arbitrary function G(z) (Ho = H), where the sum is taken over all solutions

y;j(z) satisfying f(y;) = z. To obtain the above equation, the following relation is
repeatedly used:

H,G(z) = H [equmg(m)] = (20)

HA G exp 0D ulf @] § = (HGE) e |a Y ulf @)
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Let 1/(50) be the maximum eigenvalue of H,. The characteristic function is given
by its logarithm as

o(a) =log?, (1" =1). (21)

The weighted average u(q) and the susceptibility x(q) is given by the first and the
second derivative of ¢(q).
The generalized power spectrum is as

Iy(w) = /v(o) (@)[ufz] = w(@)][J (@) + Jy(—w) = U[ule] = u(@]h @ (@)dz, (22)

where J,(w) = 1/ [1 - (ei“’/l/(go))’}{q], v (z) and h(®)(x) are respectively left and

right eigenfunctions corresponding to the maximum eigenvalue 1/(50) of H,.

3 Simple example of deterministic diffusion

It is usually difficult to obtain statistical structure functions by means of analysis.
However, in simple systems such as piecewise linear maps, it is sometimes possible
to analytically calculate such functions depending on the parameters involved in
the systems. This chapter will introduce piecewise linear maps which present with
chaotic diffusion and will set the parameters of these systems at the simplest value
which allows Markov partition, with the goal of analytically deducing statistical
structure functions such as a generalized diffusion coefficient D, and a generalized
power spectrum I, (w).

3.1 Piecewise linear maps and chaotic diffusion

Let us take an example of the following map:

LTnt+1 = f($n) =

a(xtn — N)+ N, (N<xn§N+%),
a(@n =N —=1)+N+1, (N+3 <z, <N+1),
for  YNeN (23)

This is a piecewise-linear map depicted by drawing two lines (with a gradient of
a) from the lower left vertex to the upper right vertex within a 1 x 1 square and
arranging them in a stepwise manner as shown in Fig. 1.

If parameter a is set as a > 2 and an appropriate initial point except for un-
stable periodic points is given to it, the time series {z,} will show chaotic motion,
resembling random walks. If mapping is repeated, while placing several initial points
close to each other, individual points will gradually part from each other, resembling
diffusion (Fig. 2)

©2005, Syuji Miyazaki
Diffusion Fundamentals 3 (2005) 9.1 - 9.34



Lt

Figure 1: Piecewise-linear map

Unlike ordinary diffusion which is induced by random factors such as thermal
motion of molecules, etc., this map can show diffusive motion which is determined
only by the mixing property of the chaotic map and not by any stochastic elements,
if the initial point is fixed. Such diffusion is called chaotic diffusion; it is some-
times called* deterministic diffusion” on the grounds that subsequent motions are
determined by the initial point in a deterministic manner [10, 11, 12].

Now, let us consider how we can obtain the generalized diffusion coefficient D,
and the generalized power spectrum /; in this mapping system. In a simple piecewise
linear mapping system like this one, it is sometimes possible to obtain statistical
structure functions analytically by setting the parameters of this system at levels
which allow Markov partition. At one of the simplest values of the parameter
allowing Markov partition, we will describe the method for statistically deducing
Dy and I, using generalized Frobenius-Perron operator H,.

3.2 Markov partition of piecewise linear maps and their ex-
pression using the matrix of generalized Frobenius-Perron
operator

Regarding Eq. (23) shown in the preceding section, let us consider replacing the

location z,, of particles at time n with z, = X,, + z!,. Here X,, and z!, are re-
spectively the integer and fractional part of x,,. Now, Eq. (23) can be rewritten as
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Figure 2: Chaotic diffusion

follows.
Xnp1 = Xo+t A('r'ln,)v

Tht1 = g(ﬂ?{n), !
) = L), (Kn €N 0<an 1) 2
o) = Fla) - L),

Equation (24) can be graphically represented as shown in Figs. 3-4. The map g¢
defined by Eq. (24) is a chaotic map. For almost all the initial points, the trajectories
become chaotic, as shown in Fig. 5.

In Fig. 3, the motion of X,, can be viewed as random walk on the one-dimensional
lattice, with the lattice point A(z!) of each cell serving as a jump. In Eq. (24),
the time series {X,,} is dependent only on {z/ }. In other words, {X,} is generated
from the map g. As described in the previous section, the diffusion coefficient D, of
Xr’s motion can be obtained if the generalized Frobenius-Perron operator H, for g
is given.

If a = 1++/3, the map ¢ assumes the form shown in Fig. 6. In this case, the map
can be subjected to Markov partition. If all points within p; 4 in each of the Markov
cells p1 234 shown in Fig. 6 are one-time maps, they can be mapped into one of
p1, p2, p3 and py (i.e., can be mapped to the cell pjy213+4). On the other hand,
all points in ps 3 can be mapped only to the cell p; 4, respectively. Therefore, if
this map is subjected to time evolution, with the initial distribution being uniform,
the probability distribution at all times is constant within each Markov cell. This
means that in maps which can be subjected to Markov partition, the generalized
Frobenius-Perron operator of the map can be expressed in the form of a matrix.
The generalized Frobenius-Perron operator, H,(a), can usually be expressed by the
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X’Vl
Figure 3: Dynamics of X,
following matrix if a = 14 /3.
1101
1 1 0 01
Hy (1+V3) = 31001
1 011
e 0 0 0
0 el 0 0
“1 0 0 ertb g (25)
0 0 0 ed0
1 e 0 1
1 1 0 0 1
C1+v31 1 0 0 1 (26)
1 0 e?7 1

Of the matrices contained in Eq. (25), the left matrix indicates the connections
of each Markov cell. If cell p; is mapped into cell p;, the row j line ¢ component
of this matrix is defined as 1. If cell p; is not mapped into cell p;, this component
is defined as 0. In the right matrix, the i-th diagonal component is exp(q - A;)
(A; indicates the value of A corresponding to cell p;) and is equivalent to e?“[*] of
Eq. (20).

Klages and Dorfman imposed periodic boundary conditions on their Markov
process. In other words, they truncated infinite dimensional transition matrices to
obtain conventional diffusion coefficients [3]. In contrast, we introduced the integer
and fractional parts of dynamics in Eq. (24), so that we have only to solve eigenvalue
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Figure 4: A(z]) and g(z!))

problems of finite dimensional generalized Frobenius-Perron matrices H,. This is
based on the fact that (generalized) diffusion coefficients are determined by the
correlation functions of the velocity, namely, the fractional part of the dynamics
only. Thus, we can obtain generalized diffusion coefficients including conventional
ones more precisely without using matrix truncation.

3.3 Deduction of statistical structure functions and D,(a) and
I,(a,w) when a =1++/3

The maximum eigenvalue uéo) (a) of matrix H,(a) when a = 14++/3 can be calculated
as follows:
1 1(e29 +e?+1)
0 (14 y3) = Ve 27
v .
(1) - T e

From this value, we can deduce the statistical structure functions for the time series
of the velocity of the chaotic diffusion {A(z],)} as follows.

— (0)
(@) a=1+v3 log, (1 + \/g)
A+ Ay
= 10 T = 28
S+ v3) A4 (28)
Ay (A% — 1)
— — 29
2 a=14+v3 ¢'(0) a=14++3 24,43 (29)

10
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Figure 5: Trajectory starting from the initial point zo = 1/2

D, (1+V3) = Al At goa?
!  8A3A43 ! !

+2A4% A, + 6A% + 8A1 Ay + 24, + 245 + 1), (30)

B cosw + By
I (1 3, ) ==
o (1+V3 W B3 cosw + By

y (A; — Ay)(A47 - 4y)
241(A2 — A2A5 + AL+ 1)(A2 + 1)

11
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Figure 6: Map g for a = 1+ /3

where

A = €,

Ay = Wei(e +el+1),

A = el ++/el(e??+el+1),

By = 4A1 +8A7 +8A7A, + 443,

By = 3A7 + AlAs +8A7 +4A3 45 + 1043
+6AT Ay + 8A2 + 44, Ay + 3A; + Ay,

By = Al +2A43 + 2434, + 247 + 24, + 24, + 1,

By = AT 4+4A3 £ 242454642 + 44, Ay +4A,
+2A45 + 1.

These equations are graphically represented in Fig. 7 through 10.

The u(q) shown in Fig. 8 is a weighted average of the time series of the velocity
of the chaotic diffusion {A(z!,)}. According to the framework of the theory of large
deviation statistics, u at ¢ = 0, i.e. u(q = 0), should be equal to 0, identical to the
ordinary average {A(z!,)} due to the symmetry of the map g¢. In fact, u(0) is equal
to 0 in the graph. In the same way, Do(1 + /3) at a ¢ value of 0 is identical to
the diffusion coefficient D (Fig. 9), and the Io(1 4+ v/3,w) in Fig. 10 is equal to the
conventional power spectrum obtained by the ordinary method, without involving
weighting. If ¢ is increased from 0 to oo, the weighted average wu(q) increases,
eventually approaching 1/2. That is, of the various processes involved in chaotic
diffusion, the ¢ corresponding to the process with largest fluctuation is equal to
00, and the average velocity at that time is 1/2. In the same way, the generalized

12
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Figure 7: ¢(q) (a =1+ V/3)

diffusion coefficient D, also approaches the diffusion coefficient Do (1 + V3) =0,
which corresponds to the process with largest fluctuation, as g increases to oco. The
generalized power spectrum I, (1 + v/3,w) approaches the delta function I.(1 +
V3,w) = 6(w — ) as q increases to co. If we consider that the average of A(z!,) is
1/2, the diffusion coefficient is 0 and the power spectrum serves as a delta function,
we may say that the orbit with the greatest fluctuation when a = 1+ /3, is the
drift orbit (Fig. 11) occurring from the period two orbits of z!, shown in Fig. 12.

4 Numerical calculation of generalized diffusion co-
efficient D,(a) and generalized power spectrum
I,(a,w) and its results

It is known that in the chaotic diffusion system represented by Eq. (23) there is a
complex dependence of diffusion coefficient D(a) on parameter a. Our numerical
calculation revealed that the generalized diffusion coefficient D,(a) and the gener-
alized power spectrum I,(a,w) are also dependent on the parameter in a complex
manner. It was additionally found that, among the various possible orbits for this
system, the drift orbit shows a relationship between parameter a and average ve-
locity that can be graphically represented in a form resembling the devil’s staircase.
This chapter will present these findings, using graphic representations.

13
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Figure 8: u(q) (a =1+ /3)

4.1 Numerical calculation of generalized diffusion coefficient
D, and its results

Klages and Dorfman discovered that a complex correlation is present between pa-
rameter a and diffusion coefficient D(a) in the chaotic diffusion system defined by
Eq. (23) [3]. Figure 13 graphically represents this relationship. They called the
diffusion coefficient expressed by this curve a “fractal diffusion coefficient”on the
grounds that more minute structures continue to appear within the irregular curve
when a part of the curve is magnified with progressively higher powers [3, 13, 14, 15].
This curve represents an ordinary diffusion coefficient for this system. What curve
will be depicted by the generalized diffusion coefficient, i.e., the diffusion coefficient
expanded within the framework of the theory of large deviation statistics? To obtain
this curve, we should first obtain values of a (for which Markov partition is possible)
in a number large enough to fill the a-axis adequately. (See Appendix A for de-
tail.) For each value of a thus obtained, we then calculate the maximum eigenvalue

1/(50) (a) of the generalized Frobenius-Perron operator H,(a) for the map g discussed

in the preceding chapter. Then, the equation D,(a) = 1/2(82/8¢%)logvi” (a) is
used. In this way, the curve shown in Fig. 14 can be obtained. In Fig. 14, the curve
for ¢ = 0 is identical to the conventional diffusion coefficient D(a) shown in Fig. 13.
As q is gradually increased from 0, the curve descends, eventually converging at 0
when ¢ approaches oco. During this process, it appears that the peaks of the curve
are gradually smoothed, resulting in a gradual increase in the percentage of the
relatively linear parts in the entire curve. On the basis of this finding, we estimate
that if the fractal dimension dy(q) for the curve Dy(a) is measured, it will gradually

14
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Figure 9: D, (1 + \/g)

decrease from its value at Dg(a), eventually approaching 1. Figure 15 shows the
results of measuring the fractal dimension ds(gq) of curve Dy(a) at varying values of
q, using the divider method.

Now we discuss the results of ds(g) measurement. Regarding the fractal di-
mension of Dg(a), we obtained d;(0) ~ 1.046. This indicates that ds(q) shows
monotone decrease until ¢ = 0.2. If ¢ is larger than 0.2, ds(g) depicts an upward
convex curve. Maximum dy(¢mas) ~ 1.05 was recorded when ¢y, was 0.6-0.7. In
Fig. 14, the curve for ¢ = 0.7 is shown in a solid line. The curve shown with this
solid line can be viewed as having the highest fractal dimension among D,(a). As
illustrated above, not only the diffusion coefficient D(a) but also the generalized
diffusion coefficient D,(a) assumed a complex form in the chaotic diffusion system
defined by Eq. (23).

4.2 Numerical calculation of generalized diffusion coefficient
I,(a,w) and its results

As described in Section 3.3, the generalized power spectrum I, (a,w) for a allowing
Markov partition can be obtained by calculating H,(a) and its maximum eigenvalue

Véo) (a) and the corresponding right and left eigenvectors and by applying these
values to Eq. (22). Because I,(a,w) involves three variables (g, a,w), the results
of calculation need to be expressed on the a — w plane for full characterization of
I,(a,w). Figures 16 through 20 show the results of numerical calculation at ¢ = 0,
1, 2, 5 and 10 in images. In these images, the horizontal direction indicates a and
the vertical direction corresponds to w. It presents the values of I,(a,w) at a given

15
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Figure 10: I, (1 + \/3, w)

point on the plane in a gray scale. (the number of points is equal to 600 in the
a-direction, 314 in the w-direction.)

Cross-sections of these 5 planes, cut horizontally along w = 0,7 /2, 7 are shown
below. Each of Fig. 21 through 23 contains two graphs. The upper graph uses an
ordinary scale, while the lower graph uses a logarithmic vertical scale.

16
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Figure 11: Period-two drift motion
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Figure 12: Period-two trajectory in the map g
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Figure 13: Complex parameter dependence of the diffusion coefficient D(a)
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Figure 14: Generalized diffusion coefficient D,(a)
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Figure 15: Fractal dimension dy(q) of D,(a)
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Figure 20: I;=10(a,w)
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Figure 21: I;(a,w = 0)

The lower graph in Fig. 21 contains some ¢ = 10 parts which fluctuate markedly
up and down. This seems to represent errors in calculation.

It is noticeable from these figures that the features of I;(a,w) differ greatly be-
tween the case of ¢ = 0 and the case of larger ¢ (particularly the case when ¢ = 10).
In Fig. 16, the plane Iy(a,w) at ¢ = 0 shows little change in the vertical direction,
while it assumes higher values in the vertical direction as a increases. However,
this increase is not a monotone increase but is really a repetition of small increases
depending on the parameter as shown in the upper graph of Fig. 21 through 23.
However, when ¢ = 10 (Fig. 20), a region with relatively high values and a region
with small values appear in an alternating manner in the horizontal direction. In
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the areas with large values in this case, the maximum value remains almost con-
stant irrespective of an increase in a (see the lower graph in Fig. 21 through 23).
Let us see the cell 2 < a < 3 of the plane I,(a,w) when g = 10 (Fig. 20) in more
detail. Figure 24 is a magnification of the cell 2 < a < 3 of Fig. 20. In this cell, the
plane I, (a,w) is a curve possessing one or multiple peaks in the locations satisfying
w= (la/ma)m (lg,m, € Z,l, < m,) when a is fixed at a certain value. In Sec. 3.3,
we calculated the generalized power spectrum for a = 1+ /3 (a; in Fig. 24) in
this area. Numerical calculation revealed that a sharp peak appears in the vicinity
of w = 7 when ¢ = 10 (Fig. 10). In fact, when the a; in Fig. 24 is checked, the
area in the vicinity of w = 7 is black. When ¢ — oo, this spectrum becomes a
delta function which has values only at w = n(= (1/2)27), and the corresponding
T, time series was found to be period two drift orbits. The same can be said of a
other than a = a;. That is, the black gradational peak in the locations satisfying
w = (la/ma)m = (la/2m,)2m loses intermediate gray scales and becomes a black
horizontal line when ¢ — co. As a result, the corresponding z,, motion may become
a drift orbit with a period of 2m,/l,. For example, in the cases of ay = 2.1903 - - -,
az = 2.2207--- (Fig. 24), each spectrum has a peak at w = 7/3, /4 (I;=10(as,w)
in Fig. 26 a has peak not only at 7/4 but also at 7/2.), and the weighted averages
of the orbit’s velocity u(q) converge at 1/3 and 1/4, respectively, when ¢ — oo
(Figs. 25-26). When 2 < a < 4, it is evident that A(z]) assumed only three values
(0,1,-1), in view of the shape of its map. Therefore, the time series of the drift
orbit’s velocity when a = as, a3 and ¢ — oo will be defined as follows.

{A(z',)} ={...,0,0,1,0,0,1,0,0,1,0,0,1,...} (a = a»)

{A(z',)} ={...,0,0,0,1,0,0,0,1,0,0,0,1,...} (a = a3)

This area contains other spectra corresponding to drift orbits of varying periods
of cycle, and the location of their peak is dependent on a in a complex manner. In
Fig. 20, areas with a peak in the vertical direction are visible not only in the vicinity
of 2 < a < 3 but also in the vicinity of 4.55 < a < 5 and 6.7 < a < 7. These areas
are the same in structure to the area 2 < a < 3, except for the fact that they have
been reduced in size in the horizontal direction.

4.3 Complex dependence of u(q) on a

Some areas in Fig. 20 seem to be white, since the generalized power spectrum
approaches a delta function located at the angular frequency corresponding to the
period of the unstable periodic points causing the ballistic motion. For instance,
in the seemingly white area in the vicinity of @ = 1 + v/3 the generalized power
spectrum I, (w) is given by é(w — m) in the limit of ¢ — co. The angular frequency
w = 7 corresponds to the period-2 unstable periodic points shown in Fig. 11, which
also yield a ballistic motion shown in Fig. 12. In other seemingly white areas, I (w)
are found to be delta functions in the same way.
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To examine this in detail, let us see how the weighted average of the orbit’s
velocity u(gq) will converge when ¢ — oco. Figure 27 graphically represents the
relationship between parameter a and u(g) when ¢ = 0 to 10. Here, the partial
differential related to ¢ of u(q) is 2D,(a), according to Eq. (13). The curve of
D,(a) (Fig. 14) shows that D1g(a) ~ 0. We may therefore say that the graph of a,
u(10) at ¢ = 10 (solid line in the graph) adequately converges to the graph of a,
u(oo) at ¢ = co. It seems therefore rational to deem the ¢ = 10 graph as ¢ = co.
The ¢ = 10 graph depicted with this solid line resembles the graph of a function
called the “devil’s staircase”. Most of the graphs presenting the relationship between
parameter a and the mean velocity of the drift orbit possessed by the corresponding
mapping system (the mapping system with the highest velocity) have a gradient of
0 at most values of a. But their gradient shows a monotone increase as a increases
when the entire graph is viewed.

In this graph, the value of u(q — 00) when 3 < a < 4.2is 1. When 2 < a < 4, the
value of A(z!) are either 0, 1 or —1. Therefore at least in the range of 3 < a < 4, the
time series of the corresponding drift orbit’s velocity assumes the following constant
value.

{AG)}=1..,1,1,1,1,1,1,1,1,1,1,1,1,.. }

That is, since the frequency of the time series of the velocity is 0, the power spectrum
of this time series, I, (a,w) has delta function values only when w = 0.

In the above-mentioned range 3 < a < 4.2, an unstable fixed point is formed
somewhere other than the point 0, 1 of the map g, and this point is 1 in the map
A. Furthermore, in this range, the mean velocity of the fastest drift orbit, u(q),
assumes a value of 1. If the initial point is located immediately above this unstable
fixed point under these conditions, the time series of A(xz}) is 1 at all values of
n. As a result, the power spectrum will become visible for the reasons mentioned
above. The white appearance of the range 5 < a < 6.5 can be explained by similar
reasoning. In this case, the time series of A(z]) always assumes the value 2.

5 Conclusion

This paper dealt with extracting the non-Gaussian characteristics of the phenomenon
of diffusion. The paper first referred to the fact that the diffusion coefficient can
represent only Gaussian characteristics of diffusion, and discussed the generaliza-
tion of the diffusion coefficient and power spectrum within the framework of the
theory of large deviation statistics, with the goal of obtaining means for identifying
both Gaussian and non-Gaussian characteristics. Then, the paper referred to the
mapping system in which Klages and Dorfman discovered a complex dependence of
diffusion coefficients on the parameter. We attempted to extract the non-Gaussian
characteristics of this system by calculating the generalized diffusion coefficient D,
and the generalized power spectrum I, (w). The following results were obtained.

e The parameter of the system was set at @ = 1 4 /3, which is one of the
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simplest values allowing Markov partition. The statistical structure functions
at that time, i.e., ¢(q), u(q) and D,(a), I;(a,w), were obtained analytically.
When the velocity was set at the temporal coarse graining level, the motion
corresponding to the physical process with largest deviation from the average
was identified as the period two drift motion (Fig. 12).

e The curve representing the relationship between parameter a and D,(a) was
numerically obtained for multiple ¢ values (Fig. 14). This revealed that an
increase in ¢ leads to appearance of linear parts in the curve. We then at-
tempted to evaluate the complexity of the curve quantitatively by obtaining
the fractal dimension dy(q) for these Dy(a) curves (Fig. 14).

e The two-dimensional field for a given value of ¢, i.e. I,(a,w), was numerically
obtained (Figs.16-20). This disclosed that the motion corresponding to ¢ = 0o
in this mapping system is a drift motion. It was also found that its period
was dependent on parameter a in a complex manner.

e A graph plotting the weighted mean velocity u(q) of diffusive particles against
parameter a was numerically obtained (Fig. 27). This demonstrated that the
graph u(q — oo) corresponding to the average velocity of the drift orbit has
a structure resembling the devil’s staircase.

e It was found that the unstable periodic orbit of the map g corresponding to
the drift motion with the highest velocity in this system changes in a complex
manner depending on the value of parameter a. This seems to be one of the
factors explaining why the graphs of D,(a) and u(q) have complex structures.

The above-listed non-Gaussian characteristics of the chaotic diffusion system can
be identified only within the framework of the theory of large deviation statistics. In
this sense, we may say that the usefulness of the theory of large deviation statistics
has been endorsed by this study.

The model used in this study is a model of diffusion applicable to quite limited
conditions; it is a chaotic diffusion system created by piecewise linear mapping.
Furthermore, the calculations made in this study used only the values of the pa-
rameter which allowed Markov partition of maps. Generally, it is not possible to
analytically obtain the generalized Frobenius-Perron operator of maps in a given
mapping diffusion system.

When performing calculation of the variables like the ones listed above related
to deterministic diffusion (occurring from maps) as well as general diffusion, it is
necessary to numerically obtain statistical structure functions from the temporal
coarse graining levels of the observed variables, and to deduce from these the gener-
alized diffusion coefficient D, and the generalized power spectrum I,(w). It will be
difficult to plot complex parameter dependences of generalized diffusion coefficients
obtained numerically. Takagi function-like behaviors might hide behind numeri-
cal errors. In contrast, devil’s staircase like parameter dependences of a ballistic
velocity u(oo) will be relatively easily obtained for general deterministic diffusive
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systems. We have only to numerically find the most deviated coarse-grained velocity
from the average, which is related to a single unstable periodic trajectory.

One of the open issues related to chaotic diffusion by piecewise linear mapping
is to make similar calculations for maps different from those used in this study,
and to examine whether or not the dependency on the parameter of the maps and
other features revealed in this study are commonly seen in other piecewise linear
mapping systems. Another open issue is to numerically obtain statistical structure
functions, generalized diffusion coefficients, etc., not only in models of mapping
systems but also in actual experimental systems, with the goal of examining how
the non-Gaussian characteristics will be reflected in the results.
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A Methods for calculation of parameter a which
allows Markov partition

If the time series {z, } satisfies a certain requirement, {x, } can divide unit interval
into only a finite number of intervals. The requirement is that the time series {z,}
becomes a periodic orbit after the time n* (0 < n* < 00). (This contains the case
that {z,} falls on a fixed point at time n*.) If this requirement is satisfied, map
g can be subjected to Markov partition, with these cells serving as Markov cells.
That is, if a value of parameter a satisfying this requirement can be identified, it is
possible to obtain the matrix Hy(a) of the generalized Frobenius-Perron operator
for the map g, corresponding to that value of a, and to calculate statistical structure
functions D,(a) and I;(a,w) from the maximum eigenvalue 1/(50) (a) of Hy(a).

When identifying these values of a in a comprehensive manner, using a computer,
it is advisable to use the following method. The piecewise linear mapping (23)
involves arrangement of maps composed of segments with gradient a and length
v 1+ a?. For reasons of convenience, these maps are named fy(N € N) as shown
in Fig. 28. These segments can then be expressed as follows:

y=fn(z) =alz—N)+N, <N_%<;,;§N+%>_

If the points at the upper edge, lower edge and center of the segment defined by
y = fn(z) are denoted as Ay, By and Cp, we may say as follows:

“If the parameter a of the entire map f is set at a certain value and the point
after 7 times of mapping of the initial point 1/2 is consistent with one of Ay, By
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and Cn (N € N), the map f can be subjected to Markov partition at that value of
parameter a.”

In this case, the map g, obtained by deformation of the map f, can also be
subjected to Markov partition. What should be done is therefore to identify a value
of a which satisfies this condition, using a computer.

Let us consider a case where the value of a, which allows the initial point to be
mapped to As = (24+1/2, f5(24+1/2) through 3 rounds of mapping, is to be obtained.
The orbit between the initial point and As can be expressed as follows. There are an
infinite number of pathways between them, instead of only one pathway, as shown
below.

1 1
L g Ly By L
1 1
5£)$1 L)'272£)2+5,
1 1
5]00 $1£)$2L)2+5,

What is required is therefore to list these possible pathways using a computer
and to prepare algebraic equations for each pathway, in order to obtain a solution
through numerical calculation. Although the equation corresponding to these path-
ways can be prepared in an infinite number, this prepared equation does not always
have a solution expressed in a real number. Furthermore, since a is limited to a > 2,
only a small number of equations will yield a solution.
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Figure 25: I;=10(a2,w) and u(g) at a = ax(= 2.1903...)
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