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         Abstract 
 
         The work presented in this chapter involves comparison of simulation and 
experimental results for intracrystalline and long-range diffusion in zeolitic media in 
order to demonstrate the hierarchical character of the study of transport in microporous 
structures in response to the need to address sorption and diffusion phenomena in porous 
materials over broad scales of length and time.    
 
 
1.      Introduction 
        
         The interest in computer studies of diffusion through porous media has grown 
rapidly over the last two decades, as a result of the advancement of new simulation 
techniques, force fields and methodologies dealing with the modeling of transport 
processes at atomistic and mesoscopic scales as well as the development of new central 
processing unit architectures, which enable computer modeling to be a really powerful 
tool in diffusion research. The present chapter focuses on transport studies in a special 
category of nanoporous materials, the zeolites. Their importance in environmental and 
separation technology as sorbents and catalysts has served as a strong motivation for 
studying the transport mechanisms of sorbates inside them; moreover, the possibility of 
tailoring new zeolite structures applicable to specific chemical engineering processes has 
enhanced the popularity of the field of computer modeling of transport phenomena in 
porous media.  
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         Previous publications [1-4] in this field have presented extensive reviews of 
theoretical and experimental aspects of transport in microporous solids in general and 
zeolites in particular, and have also provided a source of computational methodologies 
relying on classical and quantum mechanics for use in the atomistic modeling of transport 
in zeolites. Porous systems under consideration, in the majority of engineering 
applications, constitute a highly diverse class of materials since their overall structure is 
characterized by a wide range of length scales. In the next sections of this chapter, special 
attention is paid to the development of a strategy for studying mass transport in zeolite 
systems such as catalyst beds or membranes. The diffusion processes are modeled 
hierarchically from the atomistic scale inside the crystal (0.1 nm) and extending up to the 
mesoscopic scale of hundreds of crystals and the voids between them (1 mm) in order to 
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capture the movement of sorbate molecules in the intercrystalline space, in the blocked 
pores of  defect-bearing parts of the medium and over the interfacial regions of the zeolite 
crystals. In particular, the packing of atoms in the crystal, which form regular lattices of 
voids varying in width from 0.5 to 10 nm, gives rise to a tensorial anisotropic (depending 
on the unit cell symmetry) configurational diffusion; in addition, the unavoidable 
existence of defects in the crystals, introduced during their synthesis procedure, often 
creates blind pores or secondary macropore networks with a void distribution up to 1 μm 
or higher, contributing significantly to the effective diffusivity. Moreover, intermediate 
scale transport phenomena concerning surface diffusion which takes place during 
adsorption-desorption of the adsorbate molecules on the crystal surface, and molecular or 
streaming (Knudsen) diffusion in consequence of the intercrystalline fluid mobility, must 
be rigorously taken into account for the entire modeling of processes such as  diffusion, 
structure-chemical reactions and separations. Therefore, the theoretical and computer 
simulation approaches to be adopted towards this kind of studies must be capable of 
addressing sorption and diffusion phenomena over broad scales of length and time in the 
zeolitic medium.  
 
 
2.       Probing the mass transport mechanism  
 
         In section 2.1 below we will discuss selected computer simulation examples at the 
atomistic scale along with corresponding experimental measurements of diffusivity in 
silicalite-1 of pure sorbates (carbon dioxide, nitrogen) and a binary mixture (n-butane and 
methane). The predictions are compared with macroscopic permeation and microscopic 
quasielastic neutron scattering measurements. Furthermore, in section 2.2 predictions at 
the mesoscopic scale of the intercrystaline transport of ethane sorbed in beds of NaX 
zeolite and pulsed field gradient NMR measurements in the same medium over the same 
length and time scales are compared, in order to investigate the apparent tortuosity factor 
over the range from Knudsen to molecular diffusion. 
 
 
2.1       Atomistic scale 
 
2.1.1    Model description   
 
         Diffusivity studies at the atomistic scale require modeling of (a) the structure of 
sorbate molecules and silicalite-1 lattice and (b) the potentials of interaction between 
atoms or functional groups.  
         Silicalite-1. Silicalite-1 adopts three crystalline forms, namely the monoclinic with 
P21/n.1.1 symmetry (mono), the orthorhombic with Pnma symmetry (ortho) and the 
orthorhombic with P212121 symmetry (para). In highly pure, crystalline silicalite-1 
(Si/Al>l000), a reversible monoclinic (P21/n.1.1) – orthorhombic (Pnma) phase transition 
occurs between 350-363 K [5]. There are three intracrystalline environments where 
sorbed molecules may reside: interiors of straight channels, interiors of sinusoidal 
channels, and channel intersections. The interactions of sorbate molecules with the 
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framework in each of these environments influence their diffusion and adsorption 
behavior. The results reported here show that N2 and CO2 reside preferentially in channel 
interiors; also, it is shown that silicalite-1 cannot be in its para form under the conditions 
of the measurements [6].  
         The coordinates of the atoms in the asymmetric unit of silicalite-1, required for the 
sorbent potential map calculation, have been taken from ZSM-5 (ortho) and H-ZSM-5 
(mono, para) [6] ;   Al was assumed to be completely absent in the calculations. 
For the calculation of the Coulombic part of the potential energy (see below), partial 
charges of  –1 and +2, in units of the elementary electronic charge, were placed on 
oxygen and silicon atoms of the zeolite framework, respectively. These charges are based 
on semiempirical and local density functional theory electronic embedded cluster 
calculations [7] and have given satisfactory results in past computations with aromatic 
molecules in silicalite-1 [8]. Previous simulation works on silicalite-1 have considered 
the ortho as its prevalent form, except for a few calculations with para [8].  In the present 
work we have examined the sorption and diffusion of nitrogen by modeling the ortho, 
para and mono space groups as well. 
         Sorbates. The diatomic N2 molecule was modeled as a dumbbell with a rigid 
interatomic bond. The triatomic linear molecule of CO2 was modeled using three 
interaction sites, O, C, O, arranged on a straight line. To describe interactions, a 
simplified representation was used, cast in terms of Lennard-Jones or Buckingham sites 
on the atoms and partial charges on the molecular axis; electronic clouds were not 
considered explicitly. Partial charges were distributed around each molecule so as to 
reproduce experimental quadrupole moments. ( QN2 = - 4.67 × 10-40C m2 , QCO2  = - 13.67 
× 10-40 C m2 ). The potential energy V(r) used in this work for dispersive interaction is 
either a 12-6 Lennard-Jones (LJ) potential: 
 

[ ]12 6( ) 4 ( / ) ( / )V r r rε σ σ= −                                                                             (1) 
 
or an exp 6-1 ‘‘modified’’ Buckingham potential (N2 case), in the sense that V(r) is the 
sum of a London dispersion-type r-6 attractive part taken from LJ, while the repulsive part 
is an exponential Born-Mayer term: 
 

6( ) exp( ) 4 ( / )V r A br rε σ= − −                                                                              (2) 
 
         The way zeolite-sorbate interactions were parametrized and computed is described 
in detail elsewhere [6]. 
The forces due to partial charges were calculated through the Ewald summation method.  
The parameter κ  determining the width of the Gaussian distribution of charge which 
screens interactions between neighboring charges in the Ewald method was chosen, so as 
to make the number of reciprocal space vectors used as small as possible, to keep CPU 
time low.  With this choice of parameters, the direct space term converges within the 
cutoff distance (minimum image convention).  The choices for CO2, N2 ( 3 partial 
charges ) , N2 ( 4 partial charges ) were respectively (κ= 8 / Lmax) , (κ = 8.2 / Lmax), (κ = 9 / 
Lmax), where Lmax is the length of the longest side of our rectangular simulation box. 
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        The sorbate-zeolite electrostatic interactions were calculated based on a 
pretabulation of the electrostatic potential felt by a test charge at the nodes of a fine cubic 
mesh constructed throughout the asymmetric unit of silicalite-1.  The partial charges 
attributed to oxygen and silicon atoms of the zeolite framework are reported in Ref. 6 for 
the various zeolite models used in this work. In most calculations Si atoms were 
neglected in calculating the non-Coulombic part of the sorbate-sorbent interaction 
energy.  In these calculations we have adopted the values used by June et al. [9]  for the 
L-J parameters of zeolite  oxygens;  these were obtained by watching computed and 
experimental values for the Henry’s constant of methane at 300 K. Alternatively, we have 
also adopted the model of Watanabe et al., [10] in which Si atoms are taken explicitly 
into account in the calculation of the short range terms. These authors obtained optimal 
parameters for both O and Si by fitting to the experimental Henry’s constants for argon, 
nitrogen and oxygen. 
         The n-butane molecule is represented in terms of four united-atom methyl and 
methylene groups (interaction sites). Following June et al. [11], the same potential 
parameters have been used for both methyl and methylene, although we have assigned 
the correct masses, 15 and 14 g/mol, respectively, to the two groups. Methane was 
modeled as a spherical molecule (single interaction site), following Maginn et al. [12]. 
For the intermolecular interactions between sites on the sorbates (n-butane-n-butane, 
ethane-methane, n-butane-methane) and for the interaction between sorbates and oxygens 
of the silicalite-1 crystal, a Lennard-Jones potential was used with a cutoff distance of 
13 Å. For n-butane, bond lengths were assumed rigid and constrained to a length of 
1.53 Å. Bond angles and torsion angles were allowed to fluctuate under the influence of 
the following potentials: 
 

21( ) ( )
2bend eqV kθθ θ θ= −                                                                                                   (3) 

 
5

0

( ) cos ( )k
tors k

k

V cφ φ
=

= ∑                                                                                                    (4) 

 
The equilibrium value for the bond angle was θeq = 112°. Values of εij, σij, kθ and ck were 
identical to those used in Refs 11 and 12. In the pure sorbate cases, these representations 
have been shown to give predictions for sorption thermodynamics and diffusivity in good 
agreement with experiment. 
 
 
2.1.2     Statistical Mechanics of Diffusion 
 
2.1.2.1   Single component systems 
 
         In this section the diffusivity results for pure N2 and CO2 in silicalite-1 are presented 
and compared to macroscopic permeability measurements in silicalite-1 membranes and 
to microscopic QENS experiments in the crystal. 
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         Molecular Dynamics. The dynamical behavior of the system of N2 and CO2 in 
silicalite-1 was studied in the Canonical ensemble (NVE), in the absence of any 
thermodynamic forces that could lead to fluxes within the box. The starting configuration 
for the equilibrium Molecular Dynamics (MD) simulation was taken from configuration 
files stored in previous Grand Canonical Monte Carlo simulations for the same 
temperatures and species [6]. In the MD the particles followed classical trajectories, 
whose time evolution is governed by Newton's equations of motion; it must be noted that 
the neglect of quantum effects is fully justified at the temperatures of interest here. 
         For continuous potentials we need a finite difference approximation of the 
derivatives to solve the differential equations of motion for the particles. The algorithm 
chosen for the solution of the differential equations of motion belongs to the category of 
extrapolation methods, and more specifically to Störmer-leapfrog integrators. Due to its 
simplicity and exceptional stability, this algorithm affords a long integration time step 
and low computational cost.  Its stability has been attributed to the correspondence 
between the order of the finite difference equation and its analytical analog, to their time 
reversibility (algorithm preserves volume in phase space, i.e., is symplectic) and to the 
oscillating nature of the fundamental solutions (periodicity) [13].  Störmer-leapfrog 
integrators give fixed time averages and a low drift of the total energy, even with a long 
integration time step, though they conserve instantaneous total energy rather poorly. 
Thus, it appears that the trajectory constantly deviates from the initial hypersurface but 
always finds a way back. Mazur [13] supports the view that the leapfrog scheme is 
distinguished among the symplectic operators both in terms of the order of truncation 
errors it produces and the conservation of the total energy it affords, and that the 
trajectory really manages to sample from a correct hypersurface in phase space with 
larger step sizes than commonly recommended. 
         For a linear molecule with fixed internal geometry we would need holonomic 
constraints introduced into our equations of motion if we were to perform the integration 
in Cartesian coordinates.  However, one of the principal moments of inertia vanishes and 
the other two are equal. Thus, we can track rotational motion in generalized coordinates 
using a simple quaternion algorithm with one of the body-fixed angular velocity 
components (rotation about the molecular axis) being always kept to zero. The total 
angular velocity and the torque must always be perpendicular to the molecular axis [14]. 
Fincham has proposed four algorithms as a solution to this problem using a leapfrog 
scheme [14]; in this work, the LEN algorithm which is recommended by Fincham as 
superior to the other three (ORT, EXP, IMP) was chosen, since it has the smallest drift 
energy even for long time-steps. If ê is the unit bond vector fixed along the molecule axis, 
the torque T on the molecule can be written as 

 

gefefrT ×=×=×= ∑∑ ˆˆ α
α

α
α

αα d                                                                                     (5) 

 
with g being the “turning force”, which can be determined from the nonbonded forces  fα  on 
each atom, the position vectors rα  of each interaction site and the (algebraic) distances dα of 
each atom α from the centre of mass of the linear molecule. In a linear molecule, g can be 
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replaced by its component perpendicular to the molecular axis, gp, without affecting the 
torque.  gp is defined as 
 
gp=g–ê(ê·g)                                                                                                                            (6) 
 
There is an alternative to the use of angular velocity, and that is used by the LEN algorithm, 
which works in terms of the velocity of the axis vector: 
 

ˆd
dt= eu                                                                                                                                    (7) 

 
In this algorithm, in order to apply the constraint that the length of the ê vector remains 
unity the calculation of an undetermined multiplier λ is needed in the way described in Ref. 
6. In order to be completed, the algorithm needs the implementation of the linear velocities 
and positions (leapfrog algorithm, Eqs 8 and 9) and the calculation of the translational 
kinetic energy. 
 
vn+1/2=vn-1/2+anδt                                                                                                                   (8) 
 
xn+1=xn+ vn+1/2 δt                                                                                                                  (9) 
 
The time steps we used in the MD simulations ranged between 1 and 5 fs. The LEN 
algorithm behaved stably even with a time-step of 10 to 15 fs, but in this case it led to 
slightly different results for the diffusivities. The energy drift for the two gases and all 
models was lower than 0.2-0.4% during all MD runs. The test runs indicated that reliable 
self-diffusivities could be obtained from production runs of 30 to 180 ps. 

         The elaboration of molecular dynamics results towards the estimation of transport 
coefficients relies on Linear Response Theory (LRT) [15]. This provides the bridge 
between equilibrium time correlation functions and non-equilibrium response to weak 
perturbations. Through his regression hypothesis, namely that the relaxation of weak non-
equilibrium disturbances follows the same laws as the regression of the spontaneous 
fluctuations at equilibrium, Onsager made the first attempt towards such a bridge before 
LRT formalized it [16]. LRT proves that the time integrals of autocorrelation functions 
are related to transport coefficients via relations known as Green-Kubo, of the following 
type 
 

s
0 1

1 1 ( ) (0)
N

i i
o i

D dt t
d N

•

∞

=

= ∑∫ v v                                                                (10) 

Equation 10 relates the self-diffusivity Ds, averaged over a do-dimensional space over all 
the N molecules of the system, and the time integral of the autocorrelation function of the 
translational (center of mass) velocity vi of the sorbate molecule i in MD simulations. An 
alternative, mathematically equivalent relation to eq. 10 is the Einstein equation, where 
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the average is taken over time for the mean squared displacement of the center of mass 
position vectors ri of all the molecules in the system, i.e. 
 

2
s

1

1 1lim [ (0) ( )]
2

N

i ito i

dD
d dt N→∞

=

= ∑ r r t−                                                                         (11) 

Thus, the self-diffusivity Ds expresses the displacement of a tagged molecule among the 
remaining N-1 untagged molecules. It is the property measured using microscopic 
experimental techniques such as PFG-NMR, NMR-lifetime, and incoherent QENS. 
         According to LRT, the nonequilibrium macroscopic flux J, which develops in 
response to a chemical potential gradient under steady-state conditions, can be written in 
terms of the time integral of the autocorrelation function of the instantaneous flux j(t) 
under equilibrium conditions (absence of chemical potential gradient), as follows [15] 
 

neq 0
( ) (0)

kTo

V dt t
d

μ
•

∞ ∇= = − ∫J j j j                                                            (12) 

where V is the volume occupied by the system and the instantaneous flux is defined as 
 

1

( ) ( )
N

i
i

t
V

=

= ∑1j tv                                                                                                              (13) 

On the other hand, in macroscopic methods, such as measurement of the permeation rate, 
in a real membrane, molecules are considered to move under isothermal conditions with 
average velocity v subject to a driving force μ∇  (chemical potential gradient of the 
penetrant in the membrane; μ = μo + RT ln f  in terms of the fugacity f ). So the flux 
(molecular current density) of fluid is defined through Fick’s law [1, 32] 
 

t
ln( ) ( )
lnt

cD c c D c c
f kT

μ∂ ∇
= − ∇ = −

∂
J                                                                            (14) 

 
where Dt is the (in general concentration dependent) transport diffusivity; further 
manipulation of  eq. 14 using the equation /kT f fμ∇ = ∇ , results in a concentration 
dependent Darken-like formula  
 

t 0
ln( ) ( )
ln

fD c D c
c

∂=
∂                                                                                                (15) 

                                          
from where the so called Darken or corrected diffusivity, D0, is identified; its microscopic 
expression is given through the following relations [12, 34]  
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(16a) 

(16b) 

Clearly, with R being the center-of-mass of the swarm of N molecules, eq 16a may 
equivalently be written in terms of the mean squared displacement of the center of mass 
position of the swarm, i.e. 
 

2
0 lim [ (0) ( )]

2 t
o

N dD
d dt→∞

= −R R t

s

                                                                                      (17) 

 
An alternative way of deriving the theoretical expression of D0 in Fourier space in 
combination with Onsager’s hypothesis, has been recently employed by Briels and co-
workers [17, 18]. 
         From eq. 16b it is clear that, as sorbate loading ρ tends to infinite dilution, cross-
correlation functions between velocities of different molecules approach zero and the 
autocorrelation terms (self-diffusivity) predominate. Also, the sorption isotherm 
approaches the linear (Henry’s law) regime. In this limit, 
 

0 t
0 0 0

lim ( ) lim ( ) lim ( )D D D
ρ ρ ρ

ρ ρ ρ
→ → →

= =  

 
The statistical mechanics formulation of transport clearly indicates the physical character 
of each diffusion coefficient used in the study of sorbate flow. Thus, Ds is a pure kinetic 
property of individual molecules, D0 is a pure kinetic property [34] that has a collective 
nature, since in addition to Ds it comprises the sum of the off-diagonal cross-correlation 
terms in the array of the velocity dot products (eq. 16b). On the other hand, Dt, which is 
also a collective property, embodies in addition the isotherm shape (eq 15), i.e, exhibits 
direct dependence on the sorption thermodynamics. All three properties are in general 
concentration dependent, exhibiting different concentration dependences. 
         An alternative to equilibrium MD for obtaining transport diffusivity is the 
utilization of non-equilibrium molecular dynamics techniques (NEMD), either beyond 
the linear response in the form of transient time correlation functions [20-22], which can 
be considered as the non-linear generalization of the Green-Kubo formulae, or within the 
linear response regime by calculating the sorbate flux caused by a (macroscopic) 
chemical potential gradient under transient [12, 23] or steady state flow conditions [12, 
24-27] An extensive comparison of equilibrium MD, NEMD and hybrid methods for 
direct determination of transport diffusivity such as Dual Control Volume Grand 
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Canonical Molecular Dynamics under a constant chemical potential gradient [24-27], is 
found in Refs 26 and 27. 
         Sholl and co-workers [28, 29] have used standard equilibrium MD techniques for 
the prediction of non-equilibrium transport coefficients of various sorbates in silicalite-1 
and carbon nanotubes [30]; also, Krishna and co-workers [29] have performed studies 
towards the prediction of transport diffusivities for pure sorbates and mixtures in zeolites 
on the basis of the Maxwell-Stefan theory. Sanborn and Snurr [31] have studied binary 
mixtures in faujasite using MD in order to obtain structural and transport properties of the 
system. Briels and co-workers [17, 18] have performed a study of transport diffusivity of 
Ar sorbed in AlPO4-5 based on equilibrium MD runs by employing the Green-Kubo 
approach in Fourier space; a wavevector-dependent diffusivity was obtained, allowing 
them to assess the correct linear-response result.          
        MD - Permeation. In a real membrane, in order to determine the thermodynamic 
behavior (sorption) of the fluid, a measured or predicted solubility coefficient S is 
defined, as  
 

f
cS =                                                                                                                               (18) 

 
along with a local permeability coefficient, Pe, which provides information on the 
relationship between flux and driving force (fugacity gradient) locally at the considered 
point  as a product of fundamental thermodynamic and dynamic properties, namely 
 
Pe=D0S                                                                                                                            (19) 
  
Now the flux density can be written as 
 

0 eD S f P f= − ∇ = − ∇J                                                                                                  (20) 
 
hence, 
 

0 0 0
ln
lnt

df c df fD D S D D
dc f dc c

∂
= = =

∂
                                                                               (21) 

and 

dc
dfPD et =                                                                                                                    (22) 

 
         In an actual steady-state permeation experiment an average permeability, eP , 
throughout the entire membrane is measured [33]. This is because the overall fugacity 
drop across the membrane of thickness L, Δf= f1-f2, is known but not the local values of 
fugacity inside the membrane, as is the case in a simulation. To estimate eP ,  eq. 20 is 
integrated across the membrane using the Darken equation (eq. 21), namely [33] 
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c f

e

c f

D DJ f c fP dc df
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∂≡ = − = −
∂∫ ∫                                                           (23) 

 
 where c(f) is the function expressing the adsorption  isotherm of the adsorbate, as 
obtained from GCMC simulations. Average permeabilities computed in this way are 
compared to experimental values, with f1 and f2 being the fugacities on the high- and low-
pressure sides of the membrane, respectively, used under the conditions of the 
experiment. 
         The above relations describe the methodology followed in the estimation of 
permeability from the corresponding diffusivities and isotherms computed through the 
simulations. The basic hypothesis being made is the validity of the Darken equation, as 
suggested by many authors [1, 12], and the assumption that the corrected diffusivity is 
independent of concentration; a detailed study of the latter dependence is made [34] in 
the next section. 
         Table 1 shows the computed single-component permeabilities in the form of ratios 
with respect to the macroscopic permeabilities measured by Yan, Davis and Gavalas [35]  
for supported (porous α-Al2O3)  ZSM-5 membranes, for different sorbates. For the 
purpose of this comparison, it is more reasonable to use permeability ratios than absolute 
permeabilities, so that the influence of the morphological factors of the membrane on the 
adsorbate mobility can be factored out. As seen in the table, the calculated permeability 
ratios agree well with corresponding experimental values; they follow the order 
CO2>CH4>N2, as has been measured by van de Broeke et al. [36] and Kusakabe et al. 
[37, 38].  Also, they are reasonably close to the permselectivity reported by Kusakabe et 
al. [37] for the binary mixture CO2/N2 ( ≈ 5-7).   It should be noted that permeability 
ratios measured on a given membrane practically coincide with the corresponding 
permeance ratios, i.e. the effect of the membrane thickness is largely factored out in 
taking the ratio.  
 
 
           Table I    Predicted and experimental ratios in silicalite-1 
 Sorbates       Pe-ratios               Technique                               Sorbent             T(K)   
 
 CH4 / N2       1.2         Supported Membrane Permeation8      ZSM-5 (M3)       303    
 CO2 / CH4     2.3         Supported Membrane Permeation8      ZSM-5 (M3)       303    
 CO2 / N2       2.8         Supported  Membrane Permeation8     ZSM-5 (M3)       303    
 CH4 / N2       1.6           MD                                                      Silicalite-1         300/298 
 CO2 / CH4     2.2          MD                                                      Silicalite-1         303/300 
 CO2 / N2       3.4           MD                                                      Silicalite-1         303/298       
  
         
          Although the predicted permeability ratios for the three pure gases through 
silicalite-1 under low occupancy conditions are in reasonable agreement with experiment, 
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the absolute values of predicted permeability are by a factor of 120 to 340 higher than the 
macroscopically measured experimental values [6]. These discrepancies in absolute 
values can be attributed to the following reasons: (i) In the present simulation analysis 
only the intracrystalline diffusion resistance has been taken into account in calculating the 
permeabilities, whereas in a macroscopic supported membrane experiment, or in an 
adsorption/desorption measurement, external mass transfer limitations may affect 
transport rates. (ii) Heat transfer is still a possibility and may reduce the overall 
permeation rate very significantly. Thus, transport rates from MD simulations, which are 
sensitive only to the resistance presented by intracrystalline diffusion in a perfect zeolite 
crystal under equilibrium conditions, tend to be considerably higher than macroscopically 
measured effective diffusivities, but quite close to diffusivities measured by the 
‘‘microscopic’’ PFG-NMR and QENS methods.  This is seen very characteristically in 
the results presented for the hydrocarbons methane, n-butane, and  n-hexane in Ref. 6. 
(iii) Silicalite-1 has been modeled as a perfect, fully siliceous crystal. In macroscopic 
measurements, defects and aluminium (acid) sites are inevitably present, leading to a 
decrease in the mobility of sorbates. Intercrystalline boundaries, gel remaining between 
crystals, or nonidealities in the crystals have been proposed as sources of additional 
resistance [19]. Such defects are probably responsible for the fact that NMR-PFG and 
QENS diffusivities obtained in real silicalite-1 crystals for n-butane and n-hexane are by 
a factor of 3 or so lower than MD values [6].   
         The conclusion drawn for this atomistic study strongly supports the idea of 
modeling the transport hierarchically in the way introduced in the present chapter.          
          MD - QENS. The diffusion mechanism in the confined spaces of zeolite crystals 
depends basically on the concentration and the ratio of pore width over sorbate molecular 
size; when these sizes become comparable, the diffusing molecules remain subject to the 
strong potential field of the crystal at all times. Since this field is usually spatially 
inhomogeneous, transport occurs chiefly via random jumps of thermally activated 
molecules between “sites”, or regions around potential minima, separated by energy 
barriers Ea; this behavior is frequently met inside the lattice of nanoporous zeolitic 
crystals, and referred to as intracrystalline diffusion process being subject to a 
temperature dependence of the Arrhenius type, i.e. 
 

aexp
E

D D
RT∞

⎛ ⎞
= −⎜

⎝ ⎠
⎟                                                                                                         (24) 

where R is the gas constant and T is absolute temperature.  
         In this section the first attempt towards a direct comparison of transport diffusivities 
from MD simulations and QENS experiments [34] is presented. From figure 1, the 
Arrhenius plots of transport diffusivities from coherent QENS and simulation for both 
sorbates at the same occupancy are seen to be in excellent agreement. Predicted 
activation energy values are very close to those experimentally determined. 
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       Fig. 1  Temperature variation (Arrhenius plots, see eq. 24) of the transport diffusivity of N2 (top) and CO2  
(bottom) as obtained from coherent QENS measurements (left) and MD simulations (right) under the same 
conditions of loading. The activation energies extracted from the plots are given, for comparison. 
 
         The technique followed for the direct measurement of transport diffusivity via 
coherent QENS in figure 1, is due to Jobic et al. [39].  
         In figure 2, the results for the transport diffusivity measured directly from QENS 
measurements and our MD predictions for N2 and CO2, are presented; the corrected 
diffusivities in the QENS graphs have been produced via Darken factors obtained from 
the simulated isotherms. The increasing trend for transport diffusivity with occupancy for 
both gases is in excellent agreement with the QENS experiments, indicating a slightly 
concentration dependent D0 over the sorbate loading range used in the experimental and 
simulation work. However, particular attention should be paid to the corrected diffusivity, 
which is largely free of thermodynamic influences, reflecting this way only the rate at 
which sorbate molecules escape from the potential minima due to the atomic structure of 
the sorbent. 
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       Fig. 2  Measured (QENS) and predicted (MD) transport (Dt) and corrected (D0) diffusivities in silicalite-1 
shown as functions of loading. 
 
Figure 2 shows that the measured corrected diffusivity of CO2 decreases as sorbate 
density increases, being in good agreement with the predictions from MD.  In the case of 
N2, the QENS measurements of D0 exhibit a shallow maximum at a loading of roughly 2 
molecules per unit cell; on the other hand, MD results show a rather occupancy-
independent behavior of D0 values. Small differences between predicted and measured 
values of Dt and D0 can be attributed to the force fields used. It must be stressed here that 
no parameter adjustment was implemented at any point during calculations [34]. 
         Occupancy dependence of D0. An attempt to investigate the dependence of the 
corrected diffusivity on the concentration of the sorbed phase has been made by Reed and 
Ehrlich [40], by invoking the Quasichemical mean field approximation [41, 42] in order 
to include the adsorbate-adsorbate energetics in a study of surface diffusion on a regular 
lattice of sites. This model was adapted to the current zeolite system through the mapping 
procedure discussed in detail in Ref. 34, thereby the following expression for the function 
D0(θ) is derived, 
 

1
0 0

1 1 2( ) (0) 1 exp(2 / )2 2 2 2

z z
D D w kTzζ ζ θθ θ θ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

− −
+ − += +

− −
                                             (25) 

 
where θ  is the fractional occupancy of the sorbate molecules in the zeolite, being 
considered as possessing a uniform lattice of sorption sites with coordination number z, 
and ζ is defined by the expression 
 

1 / 2{1 4 (1 )[1 exp( 2 / )]}w kTzζ θ θ= − − − −  
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with w reflecting the pair interactions in the sorbed phase; k is the Boltzmann constant.  
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Fig. 3  Normalized corrected diffusivities from MD simulation and corresponding QC theoretical curves 
obtained from the Reed-Ehrlich model [40] for various pair interaction energy values. 
 
         Our simulation estimates for the diffusivities D0(θ) for CO2 and N2 in silicalite-1, 
normalized by the corresponding D0(0) values, are presented in figure 3. In the same 
figure are given the D0(θ)/D0(0) curves obtained from the Reed-Ehrlich model, eq. 25, for 
the values of w/kT extracted from fitting the sorption thermodynamics [34]. Plots of eq. 
25 for a higher and lower value of w/kT have also been included to display the overall 
behavior predicted by eq. 25. The model provides a satisfactory representation of the 
occupancy dependence of the corrected diffusivity. This supports the idea that the 
physical origin of the different D0(θ) dependences seen in N2/silicalite-1 at 200 K and 
CO2/silicalite-1 at 300 K lies in the higher (more attractive) sorbate-sorbate interactions.  
         Clearly, use of a constant coordination number z is an oversimplification for a 
zeolite, as sorbate molecules do not arrange on a regular lattice inside such a system. At 
saturation, each of the three environments (straight channel, sinusoidal channel, and 
channel intersections) of silicalite-1 contains roughly two molecules; based on the spatial 
arrangement of these environments, one would estimate five neighbors for channel 
interiors and nine for channel intersections. In each case, one or two neighbors would be 
closer than the rest. The value z = 8 was found to give the best fit of the QC model to the 
isotherms among the values z = 2, 4, 6, 8, 10 tried. 
         Recently, Krishna et al. [50] have verified the loading dependence of the corrected 
diffusivity on the basis of the Stefan – Maxwell theory for diffusion by comparing MD 
and Kinetic Monte Carlo simulation results with the Reed-Ehrlich model. 
 
 
2.1.2.2   Binary systems 
 
         Although the good agreement between the three microscopic techniques, PFG-
NMR, QENS, and MD, is well established for pure sorbates [39, 43], relatively few 
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studies exist in the literature presenting direct comparisons between those techniques for 
mixed sorbates. A direct comparison between MD simulations and experimental self-
diffusivities from PFG-NMR for a binary mixture of methane and tetrafluoromethane 
was made by Snurr and Kärger [44]. The reported self-diffusivities from the simulations 
were in good agreement with the experimental measurements. These authors observed 
that the diffusivities for both components, at constant total loading, decreased as the 
fraction of the larger and less mobile CF4 increased. Also, Jost et al. [45, 46] have 
reported MD and pulsed field gradient NMR studies for the diffusion of methane-xenon 
mixtures over a wide range of loadings and compositions. This study showed that xenon 
diffusivity was unaffected by the presence of methane molecules at various 
concentrations. By varying the concentration of xenon, a monotonic decrease of the 
diffusivity of both species was observed.  
         Here, the first attempt to compare results obtained from molecular dynamics 
simulations and incoherent quasielastic neutron scattering experiments on a n-butane and 
methane mixture in silicalite-1 is presented, in order to elucidate the nature of 
intracrystalline motion probed by the two techniques [47, 48].  
         To connect the “theoretical” information, extracted from the MD simulation 
trajectories, with the experimental measurements, it is necessary to calculate the self-part 
of the van Hove correlation function using [49] 
 

31( , ) ( (0)) ( ( ))s i
i

G t t d r
N

δ δ′ ′= − + −∑∫r r r R r Ri ′                                             (26) 

 
 The angular brackets denote a statistical or thermal average, and the sum is over all 
particles of a given type. The self-part of the Van Hove correlation function represents 
the conditional probability density for finding a particle at time t at a distance r from the 
position it occupied at time t = 0. As a next step, we have calculated the intermediate 
incoherent scattering function Is(Q,t), which is defined as the spatial Fourier transform of 
the self-part of the van Hove correlation function: 
 

3( , ) ( , )exp( )s sI t G t i d= ∫Q r Q r� r                                                                                      (27) 
 
where in QENS experiments, ћQ is the neutron momentum transfer. It is defined by Q = 
k - k0 where k and k0 are the scattered and incident wave vectors, respectively. Similarly, 
ћω = E - E0 is the neutron energy transfer, with ω denoting the angular velocity. In the 
hydrodynamic limit (Q→0, t→∞) where Fick’s law describes diffusive motion, the 
orientationally averaged Is(Q,t) becomes:  
 
Is(Q,t)=exp(-Ds Q2 t)                                                                                                       (28) 
 
with Ds being the self-diffusivity. 
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         To check the consistency of our MD computations, we calculated the self-
diffusivity from the intermediate scattering function Is(Q, t) in the limit of small Q and 
long times t, where eq. 28 holds. 
 
 
     Table II   Self-diffusivity of CH4 as obtained from MD simulations and from QENS 
  
 

   experiments, for CH4 loading being held constant at 4 molecules per unit cell; T=200 K. 

n-C4H10 loading 
(molec./u.c.) 

Ds
CH4 – MD 

(10-5 cm2/sec) 
Ds

CH4 – QENS 
(10-5 cm2/sec) 

0 3.9 2.2 
2.5 2.4 1.4 
5.0 0.93 0.5 
7.5 0.18 0.12 

 
 
 
         Direct comparisons of the MD predictions with the QENS measurements for the 
methane self-diffusivity as a function of the n-butane loading are shown in Table II. The 
methane Ds decreases, by significantly increasing the loading of n-butane. As the n-
butane loading rises from 0 to 7.5 molecules per unit cell, both computed and measured 
Ds falls by a factor of 20. This is because the strongly adsorbed butane molecules 
effectively block the passage of methane molecules through the channels.  
         Table III shows the methane self-diffusivity as a function of methane loading. It is 
seen that Ds falls by a factor of 9 in QENS and by a factor of 4 in MD as methane loading 
increases from 2 to 10 molecules per unit cell. Ds decreases as loading increases for both 
species. The agreement between the predicted diffusivities from simulation and the 
measured ones from the experiment is excellent, although the values obtained from MD 
are somewhat higher than the QENS measurements. This is explainable on the basis that 
the energetics of the simulated zeolite model correspond to a perfect rigid crystal lattice, 
whereas in the real medium the existence of defects and impurities could reduce the 
molecular mobility. 
 
 
 
     Table III   Self-diffusivity of CH4 as obtained from MD simulations and from QENS 
  
 

   experiments, for n-C4H10 loading being held constant at 4 molecules per unit cell; T=200 K. 

CH4 loading 
(molec./u.c.) 

Ds
CH4 – MD 

(10-5 cm2/sec) 
Ds

CH4 – QENS 
(10-5 cm2/sec) 

2 1.8 1.3 
4 1.4 1.1 
6 1.0 0.58 
8 0.8 0.27 

10 0.5 0.14 
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The discrepancy observed at the higher methane loadings can be attributed to the larger 
error associated with the neutron scattering experiments at low diffusivity values. 
         An interesting aspect on the theoretical treatment of diffusion in zeolites was given 
by Krishna [51], who verified directly the Stefan-Maxwell formulation [1] for mixture 
diffusion, by exploiting previous MD data [44, 46, 47] for diffusion of mixtures in 
silicalite-1, and showed that the mixture transport behavior can be predicted from the 
corrected diffusivities of the pure components at infinite dilution. 
     
     

 

 2.2    Mesoscopic scale 
 
         In the previous section the mass transport phenomena under investigation were 
confined in the intracrystalline region of zeolites where microscopic techniques for 
probing diffusivity such as molecular dynamics simulations and quasielastic neutron 
scattering measurements are directly applicable. Nevertheless, transport in membranes, as 
discussed for example in Table I or in  catalytic beds, clearly comprises the 
intercrystalline space, where intermolecular and interfacial collisions contribute to the 
overall flow. Diffusion at restrictions resulting from intracrystalline transport barriers in 
MFI-type crystals due to intersections and intergrowth sections between the elementary 
structural crystal units, have been studied experimentally by using Pulsed Field Gradient 
Nuclear Magnetic Resonance (PFG NMR), Interference Microscopy, and Monte Carlo 
simulation for methane, n-butane and i-butane diffusion, by Kärger and coworkers [52, 
53]. 
         In the next section, mesoscopic predictions from kinetic Monte Carlo simulations of 
ethane in a bed of zeolite NaX are compared with PFG NMR measurements of long 
range diffusivity in the same system. 
   
 
2.2.1   Model of NaX bed  
 
         A digitally reconstructed model of a real bed of NaX has been developed on the 
basis of  the experimental data concerning the edge length distribution ( 30 μm)=l and 
the shape of the crystal (perfect octahedron) used in Refs 54, 55. For the reconstruction of 
porous media consisting of particles of simple geometric shapes, as in the case of the 
octahedral crystal particles in a bed of NaX zeolite, a new computational method has 
been developed. For the modeling of the octahedra we have applied continuous potentials 
between spheres of similar volume in fcc ordering which fill up the sides of each 
octahedron. The representation of the particles is being improved by progressively 
increasing the number of spheres Ns until a sufficiently high resolution is achieved, 
according to the formula: 
 
     Ns=4G2+ 2                                                                                                                  (29) 
 

 . 

Diffusion Fundamentals 2 (2005) 7.1 - 7.25 17



Following this procedure, beds of octahedra are generated with prescribed porosity given 
by the experimental data. The volume Vobj of one coarse grained octahedron (object) in 
the reconstructed medium is then given by the relation: 

Following this procedure, beds of octahedra are generated with prescribed porosity given 
by the experimental data. The volume V

  

obj of one coarse grained octahedron (object) in 
the reconstructed medium is then given by the relation: 

Vobj=Voct+NVsph - [ 6vap + 12(G-1)ved + 4(G-1)(G-2)vfa ]                                                 (30) Vobj=Voct+NVsph - [ 6vap + 12(G-1)ved + 4(G-1)(G-2)vfa ]                                                 (30) 
  
where Voct is the geometric volume of octahedron and vap, ved, and vfa are the volumes of 
the part of sphere lying inside the octahedron when the sphere lies with its center on an 
apex, edge and face respectively. As the number of generations increases, Vsph → 0 and 
consequently Vobj ≅Voct. 

where V

                    

oct is the geometric volume of octahedron and vap, ved, and vfa are the volumes of 
the part of sphere lying inside the octahedron when the sphere lies with its center on an 
apex, edge and face respectively. As the number of generations increases, Vsph → 0 and 
consequently Vobj ≅Voct. 

  
  
  
  
  
  
  
  
  
  
  
                                                                              

 

Fig. 4   Reconstructed bed of NaX crystals of porosity φ = 0.6, periodically repeated in 3D space. 
  
  
  
At each generation G, the medium configuration is subjected to a multi-parametric 
energy minimization process with respect to the positions and orientations of the 
crystallites using the quasi-Newton based algorithm of Broyden-Fletcher-Goldfarb-
Shanno (BFGS). Minimization proceeds until the system is well-relaxed, satisfying the 
conditions of detailed mechanical equilibrium (Fig. 4). The final relaxed structure at a 
given G is used as initial configuration for the next generation. This procedure was 
repeated up to G = 19, our highest generation examined, which eventually was accepted 
as the representation of the medium. 

At each generation G, the medium configuration is subjected to a multi-parametric 
energy minimization process with respect to the positions and orientations of the 
crystallites using the quasi-Newton based algorithm of Broyden-Fletcher-Goldfarb-
Shanno (BFGS). Minimization proceeds until the system is well-relaxed, satisfying the 
conditions of detailed mechanical equilibrium (Fig. 4). The final relaxed structure at a 
given G is used as initial configuration for the next generation. This procedure was 
repeated up to G = 19, our highest generation examined, which eventually was accepted 
as the representation of the medium. 
  
2.2.2   Diffusion 2.2.2   Diffusion 
         Kinetic Monte Carlo. The method is used for the calculation of the self-diffusivity 
of ethane in the medium of NaX crystals (Fig. 4) by computing the mean-square 
displacement of a fixed number of molecules Ns in the bed. The molecules are assumed to 
travel with the mean thermal speed, 

         Kinetic Monte Carlo. The method is used for the calculation of the self-diffusivity 
of ethane in the medium of NaX crystals (Fig. 4) by computing the mean-square 
displacement of a fixed number of molecules Ns in the bed. The molecules are assumed to 
travel with the mean thermal speed, u , given by the Maxwell velocity distribution [56]. 
A random change in the direction of motion occurs after any molecule-molecule 
collision. Upon collision with a crystal surface, a new directory is selected according to 
the cosine law [60].  Random trajectories are generated in the void space of the medium 
in such a way so that in the bulk gas the lengths l between successive collisions follow an 
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exponential distribution expected from the Poisson process character of intermolecular 
collisions [56]: 
 

( ) exp( /l f l l l= − )                                                                                  (31) 
 
where f (l) is the conditional probability of having a collision-free trajectory length 
between l and l + dl with a mean value of l being denoted by l . In the bulk gas phase, 

l  is molecular mean free path 2/kT pλ σ π= 2 . In the Knudsen regime, l , the mean 
intercept length with crystallite walls, can be considered as an effective yardstick of the 
porous matrix [57]; the calculated value for the bed of fig. 4 is 71.4 μm, about by a factor 
of two higher than the experimentally measured mean edge length of the NaX octahedral 
crystal, 30 μm. This finding indicates that realistic crystal geometries as well as the 
existence of intercrystalline potential fields can give rise to a different packing than the 
ones expected from ideal porous structures studied in previous works, e.g. in digitized 
media [58] or sphere packings [57, 59].  
         The trajectory lengths of the molecules in the Knudsen regime are interrupted 
merely by the crystal surfaces. For the porosity under consideration, φ = 0.6, the 

computed ratio of the two first moments of f (l) is found to be 
2

2 0.866
2

l

l
= ;  the same 

ratio would be equal to 1 for a strictly Poisson process. This finding indicates that the 
exponential distribution (eq. 31) is progressively invalidated as the participation of the 
molecular collisions with the wall increases. 
         In figure 5, the diffusivity of ethane is presented over a wide range of mean free 
path, from the Knudsen to the molecular regime. In the transition regime, the computed 
diffusivities satisfy the Bosanquet relationship [60]: 
 

1 1 1

s K BD D D
= +                                                                                                                (32) 

 
where DK and DB are the two limiting Ds values in the bed under pure Knudsen and 
molecular diffusion conditions in the bulk regime, respectively. 
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Fig.  5   Transition of Ds from molecular to Knudsen diffusion regime as a function of mean free path λ for 
C2H6 in a bed  of NaX crystals at 298 K. 
 
Defining the tortuosity factors ηK and ηB for the two mentioned limits as follows  
 

0K
K

K

D
D

η = ,   0B
B

B

D
D

η = , 

 
where D0K and D0B are the reference diffusivities in the Knudsen and bulk regimes 
respectively, given by the formulae 
 

 0
1
3KD u= l   and  0

1
3BD uλ= , 

 
we calculated the values ηK = 1.81 and ηB = 1.05. This difference between the two 
tortuosity factors in the Knudsen and bulk regime is in agreement with the measured 
factors from PGF NMR by Kärger and coworkers [54, 55]. The much lower deviation 
from unity of the tortuosity in the bulk regime is consistent with previous simulation 
studies in simple pore matrices for so high porosity values [57-59].  
         The Derjaguin [61] formulation for D0K explicitly takes into account the 
nonexponential nature of the distribution f (l) in the Knudsen regime; assuming also that 
no correlation exists between consecutive trajectory lengths and that trajectory 
orientations and lengths are mutually independent, Derjaguin’s approach leads to 
 

2

0 2

1
3 2

K

l
D u l

l
β

⎡ ⎤
⎢=
⎢ ⎥⎣ ⎦

⎥−                                                                                                  (33) 
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where
2

cos ij
j

β γ
∞

=

= −∑ , and γij denotes the angle between trajectory lengths li and lj. 

Now, the Knudsen tortuosity factor obtained from the simulations using eq. 33 becomes 
ηK = 1.02 practically identical to that for bulk diffusion. It is obvious that the ratio 

22 / 2l l reflects the pore shape of the medium, i.e. the local interfacial geometry; the 

angular factor β, on the other hand, depends on the model used in order to describe 
molecular collision with the solid surface in the bed. In this work as mentioned above the 
cosine law [60] was used for reflection from surfaces; our computed value is β = 0.3051 
versus the theoretical value of 14/3 ( ≅ 0.3077) obtained by Derjaguin in a medium of 
randomly placed spheres. 
 
 
3.      Conclusion  
         A multiscale computer simulation study of diffusion of pure gases and mixtures in a 
representative kind of nanoporous materials, zeolites, was carried out. Self- and transport 
diffusivity predicted by molecular dynamics at the atomistic scale are in excellent 
agreement with microscopic experiments for CO2 and N2 in silicalite-1 crystal. The 
comparison of predicted and measured transport diffusivities interpreted in the light of a 
simple quasichemical theory, gave an explanation for the physical origin of the sorbate 
loading dependence of corrected and hence of the transport diffusivity. Furthermore, 
permeability ratios for various pairs of pure sorbates calculated from simulation of 
transport in single crystals, showed very good agreement with the corresponding ratios 
measured in actual silicalite-1 membranes. 
         The results of kinetic Monte Carlo simulations for the long-range diffusivity of 
ethane in a bed of zeolite NaX, confirmed the evidence for different apparent tortuosity 
factors in the Knudsen and bulk regimes, which was first observed via PFG NMR 
measurements in the same system; further analysis of the kinetic Monte Carlo simulation 
results revealed that the latter difference can be attributed to the dependence of the 
molecular paths on the geometry of the particles and the porosity of the zeolitic bed. 
Involving an alternative definition of Knudsen diffusivity by Derjaguin, in which the 
shape of actual long-range definition paths is taken into account, one obtains identical 
tortuosity factors for the Knudsen and molecular regimes. 
         
 
 
 
References 
 
  1.        Kärger J. and Ruthven D. M. Diffusion in Zeolites and Other 
Microporous Solids Wiley-Interscience, New York ,1992 
 
  2.     Bell A. T., Maginn E. J. and Theodorou D. N. in Handbook of Heterogeneous 
Catalysis, Vol. 3, p. 1165, Ertl E.G., Knozinger H. and Weitkamp J.; Eds, Wiley-VCH: 
Weinheim, Germany (1997) 

 . 

Diffusion Fundamentals 2 (2005) 7.1 - 7.25 21



 
  3.     Theodorou D. N., Snurr R. Q. and Bell, A. T. in Comprehensive Supramolecular 
Chemistry, Vol. 7, p. 507, Alberti G. and Bein T. Eds, Pergamon (1999)    
 
  4.     van de Graaf B., Njo S. L. and Smirnov K. S. in Reviws in Computational 
Chemistry, Vol. 14, p. 137, Lipkowitz K. B. and Boyd D. B. Eds, Wiley-VCH: John 
Wiley and Sons, Inc., New York (2000) 
 
  5.      Mentzen B. F. and Sacerdotte-Perronnet M., Mat. Res. Bull., 28, 1017 (1993) 
 
  6.      Makrodimitris K., Papadopoulos G. K., and Theodorou D. N., J. Phys. Chem. B, 
105, 777 (2001) 
 
  7.      Lonsinger S. R., Chakraborty S. R., Theodorou D. N. Catal.  Letters , 11, 209 
(1991); Cook S. J., Chakraborty A. K., Bell A.T., Theodorou, D. N. J. Phys. Chem., 97, 
6679 (1993)  
 
  8.       Snurr, R.Q.; Bell, A. T.;  Theodorou D.N. J. Phys. Chem, 97, 13742 (1993) 
 
  9.      June R. L., Bell A. T., Theodorou D. N., J. Phys. Chem, 94, 1508 (1990) 
   
10.      Watanabe K., Austin N., Stapleton M. R., Mol. Simul., 15, 197 (1995) 
 
11.      June L. R., Bell A. T., Theodorou D. N., J. Phys. Chem., 96, 1051 (1992) 
 
12.      Maginn E. J., Bell A. T., Theodorou D. N., J. Phys. Chem., 97, 4173 (1993) 
 
13.      Mazur Al., J. Comput. Phys., 93, 171 (1997) 
 
14.       Fincham D., Mol. Simul., 11, 79 (1993) 
 
15.     Hansen J. P., McDonald I. R., Theory of simple liquids, Academic Press, London, 
1986 
 
16.      L. Onsager, Phys. Rev. 37, 405 (1931); ibid. 38, 2265 (1931) 
 
17.      Hoogenboom, J. P.; Tepper, H. L.; van der Vegt, N. F. A. Briels, W. J. J. Chem. 
Phys., 2000, 113, 6875 
 
18.      Tepper, H. L.; Briels, W. J. ibid., 116, 9464 (2002) 
 
19.      Graaf J. M.; Kapteijn F.; Moulijn, J. Microporous and Mesoporous Materials,  
           35-36, 267 (2000) 
 
20.      Visscher, V. M. Phys. Rev. A, 10, 246 (1974) 

 . 

Diffusion Fundamentals 2 (2005) 7.1 - 7.25 22



 
21.      Evans, D. J.; Morriss, G. P. Phys. Rev. A.,  38, 4142 (1988) 
 
22.      Petravic, J.; Evans, D. J. Phys. Rev. Lett., 78, 1199 (1997) 
 
23.      Arya, G.; Maginn, E. J.; Chang, H.-C. J. Chem. Phys., 113, 2079 (2000) 
 
24.     Heffelfinger, G. S.; van Swol, F. J. Chem. Phys., 100, 7548 (1994) 
 
25.     MacElroy, J. Chem. Phys., 101, 5274 (1994) 
 
26.     Arya, G.; Chang, H.-C.; Maginn, E. J. J. Chem. Phys., 115, 8112 (2001) 
            
27.     Papadopoulos, G. K., Molec. Simulation, 31, 57 (2005) 
 
28.     Skoulidas, A. I.; Sholl, D. S. J. Phys. Chem B., 106, 5058 (2002) 
  
29.     Skoulidas, A. I.; Sholl, D. S.; Krishna, R. Langmuir , 19, 7977 (2003) 
 
30.     Skoulidas A. I., Ackerman D. M.; Johnson J. K.; Sholl D. S. Phys. Rev. Lett., 89, 
185901 (2002) 
 
31.    Sanborn, M. J.; Snurr, R. Q. Sep. Purif. Technol., 20, 1 (2000) 
 
32.     Papadopoulos G. K., Petropoulos J. H. J. Chem. Soc., Faraday Trans., 92, 3217 
(1996) 
 
33.    Papadopoulos G. K., J. Chem. Phys., 114, 8139 (2001) 
  
34 .    Papadopoulos G. K., Jobic H., Theodorou D. N.,  J. Phys. Chem. B, 108, 12748 
(2004) 
 
35.    Yan Y., Davis M. E., Gavalas G. R., Ind. Eng. Chem. Res., 34, 1652 (1995) 
 
36.  van den Broeke, L.J.P.; Bakker, W.J.W.;  Kaptein F.; Moulijn, J.A. Chem. Eng. Sci., 

54, 245 (1999) 
 

37.   Kusakabe, K.; Yoneshige, S.; Murata, A.; Morooka, S. J. Membrane Sci., 116, 39 
(1996) 

 
38.    Kusakabe K., Sakamoto S., Toshiyuki S., Morooka S., Separation and Purification 
Technology, 16, 139 (1999) 
 
39.     Jobic H.; Kärger J.; Bee, M. Phys. Rev. Lett., 82, 4260 (1999) 
 

 . 

Diffusion Fundamentals 2 (2005) 7.1 - 7.25 23



40.     Reed D. A., Ehrlich G., Surface Sci., 102, 588 (1981) 
 
41.     Fowler, R. and Guggenheim, E. A. Statistical Thermodynamics, University Press, 
Cambridge, 1949; p. 421 
 
42.     Bethe, A. Proc. Roy. Soc. A, 150, 552 (1935) 
 
43.      Jobic H., Ernst H., Heink W., Kärger J., Tuel A., Bee M., Micropor. Mesopor. 
Mater., 26, 67 (1998) 
 
44.      Snurr R. Q., Kärger J., J. Phys. Chem. B, 101, 6469 (1997) 
 
45.    Jost, S.; Fritzsche, S.; Haberlandt, R. Chem. Phys. Lett., 219, 385 (1997) 
 
46.    Jost, S.; Bar, N. K.; Fritzsche, S.; Haberlandt, R.; Kärger, J. J. Phys. 
Chem. B., 102, 6375 (1998) 
 
47.     Gergidis L. N., Theodorou D. N., J. Phys. Chem. B, 103, 3380 (1999) 
 
48.    Gergidis G. N., Theodorou D. N., Jobic H., J. Phys. Chem. B, 104, 5541 (2000) 
 
49.   Gaub M., Fritzsche S., Haberlandt R., Theodorou D. N., J. Phys. Chem. B, 103, 
4721 (1999) 
 
50.    Krishna R., Paschek D., Baur R., Microporous Mesoporous Mat., 76, 233 (2004) 
 
51.    Krishna R., Chem. Eng. J., 84, 207 (2001) 
 
52.    Vasenkov S., Böhlmann W., Galvosas P., Geier O., Liu H., Kärger J., J. Phys. 
Chem. B., 105, 5922 (2001)  
 
53.    Geier O., Vasenkov S., Lehmann E., Kärger J.,  Schemmert U., Rakoczy R., 
Weitkamp J., J. Phys. Chem. B., 105, 5922 (2001) 
 
54.    Geier O., Vasenkov S., Kärger J., J. Chem.. Phys., 117, 1935 (2002) 
 
55.   Vasenkov S., Geier O., Kärger J., Eur. Phys. J. E., 12, s35 (2003) 
 
56.    Kennard H., Kinetic theory of gases, McGraw-Hill, New York, 1938 
 
57.    Levitz P., J. Phys. Chem., 97, 3813 (1993) 
 
58.    Burganos V. N., J. Chem. Phys., 109, 6772 (1998) 
 
59.    Zalc J. M., Reyes S. C., Iglesia E., Chem. Eng. Sci., 59, 2947 (2004) 

 . 

Diffusion Fundamentals 2 (2005) 7.1 - 7.25 24



 
60.    Cunningham R. E., Williams R. J. J., Diffusion in Gases and Porous media, Plenum 
Press, New York, 1980 
 
61.   Derjaguin B., C. R. Acad. Sci. URSS, 7, 623 (1946) 

 . 

Diffusion Fundamentals 2 (2005) 7.1 - 7.25 25



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


