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Abstract 
A multi-pulsed free-induction NMR experiment is described theoretically for spins 

diffusing within a cylindrical capillary. The characteristic time for the particles to move on a 
distance of the capillary diameter is smaller or comparable to the time interval between the 
applied 90° rf pulses and the relaxation times entering the Bloch equations. In this case the 
spin diffusion is restricted and the classical solutions of these equations for unbounded media 
are not applicable. We have calculated the mean magnetization in the cross-section of the 
capillary after any of the rf pulses and found the induced NMR signal within the Bloch-
Torrey-Stejskal theory for spins reflected at boundaries. The problem is extended by 
considering a possible macroscopic (plug and Poiseuille) flow of the fluid inside a capillary. It 
is found that with the increase of the rf pulse number, the maxima of the observed signals do 
not decay to zero but converge to a nonzero value. The proposed theory thus seems to be 
suitable for the description of experiments on systems rapidly relaxing due to diffusion and 
flow. 
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1. Introduction 
In a number of physical, chemical, biological, and industrial processes particles diffuse in a 

confining medium [1-5]. When such particles encounter an interface, they may interact in 
different ways depending on their physical and chemical properties; in particular, the particle 
can be reflected. Its observed random motion is then additionally complicated by multiple 
reflections on the interface. From experimental probes for such observations, NMR is of 
special interest as being a non-invasive method to “label” Brownian trajectories of spin-
bearing particles by using magnetic fields. From numerous NMR techniques, pulse methods, 
mostly different modifications of spin-echo, have found wide applications in the studies of 

The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application

© 2009, V. Lisy
diffusion-fundamentals.org 9 (2008) 6, pp 1-10 1



 

diffusion [3-5]. In the present contribution, another NMR method will be considered. We 
shall describe the free-induction NMR experiment for spins diffusing in a thin cylindrical 
capillary. The method consists in the application of a series of identical rf pulses, each of 
which causes the 90° rotation of the magnetization of the sample. After the pulses the signal 
induced by the relaxing magnetic moment, the so called free-induction decay (FID), is 
registered. The use of this method has a long history [6]. We, however, believe, that in this 
work a new potential of this multi-pulsed technique will be shown, particularly in connection 
with investigations of systems rapidly relaxing due to (restricted) diffusion and convection.  

Both these phenomena have been extensively studied for more than half a century. The 
origin of diffusive NMR phenomena can be attributed to Hahn’s discovery of spin echoes in 
1950 [7], and the first experiment on flowing water was described by Suryan in 1951 [8]. 
Later, these results have been developed by numerous authors that cannot be mentioned here 
(for a review on diffusion see e.g. [3], and for the flow characteristics measurements see [9, 
10] and more recent works [1, 11] dealing also with NMR imaging in medicine and 
environmental science). However, in spite of this effort the description of flow in bounded 
media remains an open problem. This work is aimed to contribute to a particular problem of 
the diffusion of particles in a bounded area on the background of a flow. It will be shown that 
the multi-pulsed FID experiment could serve as an efficient tool to study such processes. The 
reason for this is in the fact that after a finite number of applied rf pulses the maxima of the 
observed signals are predicted to be constant (they do not decay to zero), which could be 
important for experiments on fast evolving systems [4]. 

The paper is organized as follows. First, the problem of finding the magnetization created 
by particles diffusing in a sample flowing through a cylindrical capillary is formulated within 
the Bloch-Torrey-Stejskal theory. Next, an auxiliary task for plug flow is solved exactly, 
neglecting the diffusion. The scheme of this solution is then used to solve a problem which 
includes both the diffusion and Poiseuille flow. We calculate the time dependent NMR signal 
induced after any of the applied 90° rf pulses and demonstrate that with the increasing pulse 
number the envelope of the signals approaches a constant value. 

2. Restricted diffusion and flow in NMR 
Soon after the first spin-echo studies of diffusion by NMR methods it was found [12] that 

the measured diffusion coefficient D can depend on the parameters of experiment. This can 
happen if in studied systems particles cannot move on a large distance: the mean time for the 
nucleus to cross the sample in the direction x, where the sample size is given by a, is tx = 
a2/2D. If tx is much smaller than the relaxation time and smaller or comparable to the 
experimental time τ, the effects of restriction on the diffusion should be essential. During the 
time τ  the magnetization does not relax to its equilibrium value and spins “feel” the existence 
of the boundaries since they can travel across the whole sample and be reflected or absorbed 
by the sample walls. Then the apparent D extracted from the data using formulas for 
unbounded media depends on τ which means that the theory should be improved. This can be 
done by using the Bloch-Torrey equations [13] with boundary conditions for magnetization. 
The effect of flow was included in these equations by Stejskal [14]. The modified equation for 
the magnetization in the case of incompressible fluid reads 

( )υ γ∂
+ ∇ = ×

∂
M M M H
t

0

2 1

+ −
− − + Δx y zM i M j M M k D M

T T
.        (1) 

Here, υ  is the flow velocity, γ is the gyromagnetic constant, T1 and T2 are the longitudinal 
and transversal relaxation times of the spins, and , ,i j k stay for unit vectors in the laboratory 
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frame. Adding to the left side of (1) the term divυM , the theory can be used also for 
compressible fluids. The external magnetic field consists of a strong static field Hz and a 
much weaker high-frequency field 1H , that is perpendicular to the axis z. This field changes 
with the frequency close to the resonance one. We assume that it oscillates with the Larmor 
frequency ω = γHz, i.e., 1 1 1 exp( i )ω+ = −x yH H H t . The field Hz is homogeneous, Hz = H0, and 
it is assumed that the magnetization is given by the particles with equal Larmor frequencies. 
The coil of the length L creates the high-frequency magnetic field along x with the resonance 
frequency. The origin of the coordinate system coincides with the beginning of the coil. The 
coil at the same time serves as the detector of the free induction signal. To have a possibility 
to observe these signals, the duration of the 90° pulses must be much shorter than the spin 
relaxation times. Then the change of the magnetization during the action of the short pulses 
can be neglected. The time interval between the pulses will be denoted as τ. 

2.1. Plug flow, no diffusion 
Now, let us turn to the problem of finding the signal of FID, first in a methodical case of 

constant velocity and in the absence of diffusion. Then Eq. (1) significantly simplifies. The 
flow is assumed in the x direction. In the system rotating with the Larmor frequency and using 
the quantity Mx + iMy = (ρ + im)exp(-iωt), it is possible to divide (1) into the separate 
equations for ρ, m (projections of the magnetic moment onto the x and y axes of the rotating 
frame) and Mz. So, when the rf field is turned off, we have 

1
2υ −∂ ∂

+ = −
∂ ∂
m m T m
t x

,    ( )1
1 0υ −∂ ∂

+ = − −
∂ ∂

z z
z

M M T M M
t x

.         (2) 

The fluid enters the coil with the magnetization M0 along the axis z. Thus the boundary 
conditions are  

( 0, )= =m x t 0 ,   0( 0, )= =zM x t M .           (3) 

We have also to find the initial conditions after every of the pulses. The rf pulse rotates the 
magnetization vector in the plane perpendicular to the x axis of the rotating frame. Neglecting 
all other processes during the pulse, we have after the first 90° pulse m(x, 0) = M0, Mz(x, 0) = 
0. After the nth pulse 

( )( , ) ,τ τ τ τ− + Δ = − −Δzm x n M x n ,    ( )( , ) ,τ τ τ τ− + Δ = − − −ΔzM x n m x n ,      (4) 

where Δ << τ is the time of duration of the pulse. The x projection of the magnetization also 
satisfies (2) for m, and ρ(0, t) = 0. After the first pulse ρ(x, 0) = 0 and since the rotation of 
M does not change this projection, we shall have ρ(x, t) = 0 for all times. To find m(x, t) after 
the nth pulse, one must n times step by step solve Eqs. (2) with the conditions (3) and (4). A 
simple way to do this is to rewrite the task using the Laplace transform in the k space, e.g., for 
m(x, t) 

0

( ) ( , ) exp( )
∞

= −∫km t m x t kx dx .           (5) 

By this way first-order differential equations are obtained and easily solved together with the 
boundary and initial conditions. For example, after the first pulse one finds 
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( ) (0 1 expυ⎡= −Θ − −⎣z )1/ ⎤⎦M M x t t T ,           (6) 

where Θ(x) is the Heaviside function. Since all spins within the volume of the coil of 
detection contribute to the observed signal F(t), the signal is proportional to the integral over 
the coil length, so that we have ( ) ∝F t  1( ) exp( / )υ− − −L L t t T  if L > υt, and  if L < 
υt. In the general case we solve the equations for all the time intervals of magnetization 
relaxation in the k space: 

( ) ∝F t L

( ) ( ){( ) 0
2exp 1γ υ τ⎡ ⎤= − + − −⎣ ⎦

n
yk n

Mm k t n
k }N ,           (7) 

where N1 = 1 and for l = 0, 1, 2,... 

( )2 2
0

+
=

= −∑
l

m
l

m

N A B , ( ) 1
2 3 2 2

+
+ += + − l

l lN N B , 

with A = 1 - exp(-γ1τ + υk), B = exp[-(γ1+γ2)τ + 2υk], and γ1,2 = 1/T1,2. Analogously the 
formula for Mz is obtained. After the second and next pulses (for the first one see (6)) we have  

( )( 1) 0+ =n
zk

MM t
k

( ) ( )( )( 1)0
1expτ τ γ+⎡ ⎤ υ⎡ ⎤− + − − +⎣ ⎦⎢ ⎥⎣ ⎦

n
yk

M m n t n k
k

.        (8) 

The inverse transformation of (7) yields m(x, t), and after the integration over the volume of 
the coil we obtain the detected signal F(t), normalized to M0, in the time intervals ( ),n nτ τ τ− : 

( ) (0 2( ) exp /= − ΘnF t V t T V )0

)1
2

,   n = 1, 

[ ]{ } (1 1
2 1

0
( ) exp ( 1) ( 1) expτ τ− −

=

−⎡ ⎤= − − − − − +⎣ ⎦∑ m
n

m

l

F t T t n T T m  

         ( ) ( ) (1
1 1/ 2 1/ 2exp τ− + +

⎡ ⎤× Θ − − Θ⎣ ⎦m m m mV V T V V )

1+ ⎤
⎦

l

,   n = 2l +2, 

( ) ( )( ) ( )1 1
2 2 2 1 1( ) 1 exp 1 τ− −
+

⎡= + − + −⎣n lF t F l T T F t ,   n = 2l +3,         (9) 

where ( )1 2υ τ τ⎡= − − − +⎣p ⎤⎦LV L t n p . Note that this description exactly corresponds to an 
older experiment performed on the mixture of 3He in He II [15].  

After the nth pulse we have for the maxima of the detected signal, i.e. for Fn immediately 
after the pulse (at t = (n - 1)τ): 

1(0) 1=F ,          (10) 

[ ]2 2 (2 1)τ+ +lF l ( )1 1
1 2

0

( 1) exp τ− −

=

⎡ ⎤= − − +⎣ ⎦∑ m

m

T T m
l

( ) ( ) ( )1
1 1/ 2 1/ 2exp τ− + +

⎡ ⎤Θ − − Θ⎣ ⎦m m m mV V T V V ,

  

and 2 3[(2 2) ]τ+ +lF l  is determined by 2 2+lF  and an additional term 
1 1 1

1 2( 1) exp[ ( )( 1) ]τ+ − −− − + +l T T l , which decays with increasing l. Here, 1 2 /τυ= −pV p L . It is 
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seen that with the increase of n the sums in Fn converge to a constant value. If 
crit crit/ / 2υ τ υ υ= > >L , we have 11 (1 /)exp( / )υτ τ= − − −nF T  for even n > 1, and when 

critυ υ> , . If 1=nF crit / 2υ υ< , the sum in 2 2lF +  splits in two sums: the first sum (with Vm) is 
from m = 0 to [L/2υτ] and the second one runs from m = 0 to [L/2υτ - 1/2] ([x] is the closest 
integer number which is lower than x). In these cases Θ functions equal to 1. The higher m 
terms do not contribute to . Equation (10) can be easily evaluated numerically. Here we 
only give one more simple analytical result for the special case 

2 2+lF
0υ →  at l >> 1: 

[ ] ( )
( )

1
2 2 1 1

1 2

1 exp /
(2 1)

1 exp

τ
τ

τ
+ − −

− −
+ ≈

⎡ ⎤+ +⎣ ⎦
l

T
F l

T T
.         (11) 

2.2. Poiseuille flow with restricted diffusion 
Often for the experimental conditions the Bloch model is not able to ensure the observed 

decay of the magnetization. Here we assume that another mechanism - diffusion - should be 
taken into account, not included in the previous consideration. Let the conditions of restricted 
diffusion are satisfied (as it is in the already mentioned experiment [15]) and the fluid flows 
through a circular tube with the radius a along the axis x. In the system of coordinates rotating 
with the resonance frequency after the switching off of the rf magnetic field the projections of 
Eq. (1) on the axes y and z have the form 

( )
2

2 υ∂ ∂
+ = − +

∂ ∂ s
m m mV r D m
t x T

Δ ,         (12) 

( ) 0

1

2 υ+ = − +
∂ ∂

zz z −∂ ∂
Δs zV r D M

t x T
M MM M

0

.         (13) 

Now, the spin self-diffusion coefficient is denoted as Ds, and V is the mean velocity in the 
cross section of the tube. Later we shall explicitly use the Poiseuille profile for the velocity, 
υ(r) = 1 - (r/a)2. The boundary conditions at x = 0 for all possible r, t are the same as above 
(3). In addition, we assume that the surface of the tube does not create magnetic fields and the 
diffusion flows on the surface absent. The flow of the magnetization on the tube axis, due to 
symmetry, is also zero, so that 

/ /∂ ∂ = ∂ ∂ =zm r M r , r = 0, a.         (14) 

The initial conditions after the rf pulses are already given by Eqs. (4). To determine the time 
dependence of the free-induction signal one has to solve Eqs. (12) and (13) with the boundary 
conditions (3) and (14) and initial conditions (4). The solution of this boundary problem is 
complicated due to the presence of the coefficients depending on the coordinates. One can 
proceed as follows. Let us introduce the mean magnetization 

( ) (1, ,= ∫m x t dSm x r t
S

),

)

,         (15) 

where S is the area of the tube cross-section. For this function, a one-dimensional diffusion 
equation can be obtained by solving the original equation (12), if for m its mean (15) is used 
as the first approximation. The solution is searched for as an expansion in the Bessel functions 

0 ( /λnJ r a , which are finite at r = 0 and orthogonal in the interval (0, 1), with λn being the 
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roots of the equation J1(λ) = 0 that follows from the boundary condition at r = a. The resulting 
equation for m  then reads 

2

2
2

12
⎛ ⎞∂ ∂ ∂

+ + =⎜ ⎟∂ ∂ ∂⎝ ⎠
V m D

t x T x
m ,         (16) 

with an effective diffusion constant (the Taylor-Aris expression [16]) valid for λna-2Dst 1, 

( )2 6

1

1 64 / λ
∞

−

=

⎡
≈ +⎢

⎣ ⎦
∑s s
n

D D Va D ⎤
⎥n .          (17) 

The numerical result for the sum is 6
1

64 0.021λ∞ −
=

=∑ nn
. The same equation as (16) (with T1 

instead of T2) can be obtained for the mean of Mz - M0. Note that a more exact (time-
dependent) diffusion coefficient, which possesses correct limits for both large and small t can 
be found in [17], where a problem of the diffusion of a solute during laminar flow in tubes is 
considered, 

( )2 2

6 2
1

1 exp( ) 11 64 1
λ

λ λ

∞

=

⎡ ⎤− −⎛ ⎞
⎢= + −⎜ ⎟
⎢ ⎥⎝ ⎠ ⎣ ⎦

∑ n

ns s n n

tD t Va
D D t

⎥ .       (17a) 

When t → 0, we have purely molecular diffusion, D = Ds. 
It is easy to see that at arbitrary value of σ particular solutions of Eq. (16) can be written in 

the form 

2 21exp σ σ⎡ ⎛± + − + +⎜⎢ ⎝ ⎠⎣ ⎦
i x vx D v D t

T
⎤⎞

⎟ ⎥ , v = V/(2D).        (18) 

The solutions that satisfy the boundary conditions and the initial conditions after the first 90° 
pulse are 

( ) ( )(1) 2 2
0 2, exp /σ σ⎡ ⎤= − + −⎣ ⎦m x t M L v Dt t T , 

( ) ( ){ }(1) 2 2
0, 1 exp /σ σ⎡= − − + −⎣ 1

⎤⎦zM x t M L v Dt t T ,       (19) 

where the integral operator replacing the Laplace operator (5) from the preceding part has 
been introduced, 

( ) ( ) ( ) ( )2 2
0

sin
2expσ

σ σσσ σ
π σ

∞

=
+∫

xdL f xv f
v

,         (20) 

with the property 1 1σ =L . The structure of the solution is the same as above. The 
magnetization that determines the free-induction signal after the nth pulse is 

( )( )
0 2expσ γ= −n

nm M L t Nn ,         (21) 
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where tn = t - (n - 1)τ, N1 = 1, l = 0, 1, 2,..., 

( )2 2
0

+
=

= −∑
l

m
l

m

N A B , ( ) 1
2 3 2 2

+
+ += + −

l
l lN N B ,         (22) 

A = 1 - exp(-γ1τ),  B = exp[-(γ1+γ2)τ],   γ1,2 = (σ2 + v2)D + 1/T1,2. 

The mean magnetization (15) can be expressed through the error function as follows. After 
the first pulse we have 

( ) ( ) ( )(1)
0 2, exp /= −m x t M t T u x t, ,  τ≤t ,         (23) 

where 

( ), =u x t 1 1 exp erf 1 erf
2 2 2

⎧ ⎫⎡ ⎤+⎛ ⎞ ⎛⎪ ⎪⎛ ⎞+ − +⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

− ⎞
⎟

xV x Vt x Vt
D Dt Dt

.      (24) 

After the second and subsequent pulses it follows from (21) and (22) 

( )(2 2) ,+ =lm x t ( ) ( )0 2
0 1 2

1 1exp / 1 exp τ
=

⎡ ⎤⎛ ⎞
− − − +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑

l
k

n
k

M t T k
T T

 

                    ( ) ( ) ( )1, 2 exp / , 2τ τ τ⎡ ⎤× + − − + +⎣ ⎦nu x t k T u x t kτn ,      (25) 

( ) ( )(2 3) (2 2), ,+ += −l lm x t m x t ( ) ( ) (0
2 1 2

1 11 exp 1 ,τ
⎡ ⎤⎛ ⎞

− − − + +⎢ ⎜ ⎟
⎝ ⎠⎣ ⎦

l nt )⎥M l u x
T T T

t .    (26) 

If D = 0 the function u turns to the Heaviside function Θ(x - Vt) and Eq. (25) simplifies to the 
above obtained solution for the plug flow. For other limits we have li , , and u 

≈ 1 for x >>

m 0
→∞

=
t

u
0

lim 1
→

=
t

u

Dt  and x >>Vt. 
The signals Fn induced in the coil of the spectrometer are again found by integrating of 

(23) - (25) over the length L. The result is readily obtained analytically but is rather bulky and 
we do not show it here. Instead, we illustrate the results by numerical calculations presented 
on Figs. 1 and 2. While Fig. 1 illustrates the monotonically decaying signal after one applied 
rf pulse, it is seen from Fig. 2 that already after the fourth pulse (for the given parameters) the 
maximum of the registered signal increased in comparison with the signal maximum after the 
third pulse. 

The envelope of the induced signals (i.e. the series of the signal maxima) is obtained from 
Eqs. (23) - (25) after the integration over x. Here we show only the simplest result valid at 
very low velocities and at / 2 1τL D , when the effect of diffusion on the measured signal 
is significant: 

[ ] ( )1

11 1 2

exp /1 1 1(2 1) 1 exp ( 1) exp
2 2

τττ τ
π τ =

⎫⎧ ⎡ ⎤

2 1
⎡ ⎤−⎛ ⎞ ⎛ ⎞⎪ ⎪+ ≈ − − − − − + −⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

+⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎩ ⎣ ⎦ ⎭
∑

l
m

m

TLF l m
T T TD m m

. 

                    .           (27) 
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Fig. 1:  Time dependence of the normalized FID 
signal after the first 90° pulse. The parameters used a
T

re 
1 = T2 = 0.2 s, τ = 0.1 s, υ = 0.04 cm/s, D = 0.008 

cm2/s, L = 1 cm. 

 
 
 
 
 
 
 

 

Fig. 2:  Graph for FID signals after the first four rf 
pulses illustrating that the signal maxima do not decay 
to zero (see the text). For the used parameters (the 
same as in Fig. 1), the signal maximum converges to 
the value 0.311. 

 
 
 
 
 
 

 

 

Fig. 3:  Signal maxima after n rf pulses. 

 
 
 
 
 
 
 
 
 

 
 
The sums in (27) can be expressed through the degenerate hypergeometric function or 

calculated numerically. An illustration of such calculation is in Fig. 3 showing the maxima of 
detected signals, Fmax = F[(2l + 1)τ], for even signals after n = 2l + 2 rf pulses. With the 
increase of n the odd and even signals become indistinguishable (see Eq. (26) where the last 
term in (2 3) ( , )+lm x t exponentially decreases to zero with increasing l) and their envelope 
approaches a constant value (0.311 for the same parameters as in Figs. 1 and 2). 
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3. Conclusions 
The aim of the present work was to contribute to diffusion NMR that is widely used as a 

non-invasive probe in a multitude of applications ranging from physics and chemistry to 
medicine. In connection with growing number of investigations on small space and time 
scales, it is especially important to dispose with experimental methods and accurate 
theoretical models suitable for studies of diffusion in bounded media. The theoretical 
description of such experiments encounters serious difficulties. In the frame of the Bloch-
Torrey-Stejskal phenomenology, partial differential equations with appropriate boundary 
conditions for spin magnetization must be solved together with initial conditions 
corresponding to the rf pulse sequences used in the experiment. Most diffusion NMR 
experiments employ some of the sequences based on spin-echo methodology. In our work, a 
different method is addressed. We have described a multi-pulse experiment in which a series 
of identical rf pulses is applied to the sample. A restricted character of spin diffusion within 
the sample is assumed. In addition, there can be a macroscopic flow of the fluid. The sample 
is contained in a cylindrical capillary but the method of solution can be extended to different 
geometries, e.g., to a flow between close parallel plates. We have calculated the NMR signal 
induced by the magnetization after each of the rf pulses. Every of the individual signals can 
rapidly decay to zero. However, the envelope of these signals (the curve connecting the signal 
maxima) with increasing time (or number of pulses) approaches a nonzero value that can be 
determined using quite simple formulas. Due to this we believe that the proposed method and 
its description could find applications in investigations of rapidly evolving systems when 
conventional experiments cannot be used to obtain reliable estimates of molecular mobility, 
and in studies of flowing fluids. 

 
We dedicate this paper to the memory of Professor A. V. Zatovsky who involved us in the field 
and many years worked with one of us (V.L.). This work was supported by the Agency for the 
Structural Funds of the EU within the project NFP 26220120021, and by the grant VEGA 
1/0300/09. 
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