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Abstract. We define the volume density and basing on the Euler’s and Lagrange 
theorems derive the volume continuity equation. These fundamental formulae define the 
volume fixed frame of reference in the multicomponent, solid and liquid solutions. The 
volume velocity is a unique frame of reference for all processes namely, the mass 
diffusion, charge transport, heat flow, etc. No basic changes are obligatory in the 
foundations of linear irreversible thermodynamics except recognizing the need to add 
volume density to the usual list of extensive physical properties undergoing transport in 
every continuum. The volume fixed frame of reference allows the use of the Navier-Lamé 
equation of mechanics of solids. Proposed modifications of Navier-Lamé and energy 
conservation equations are self-consistent with the literature for solid-phase continua 
dating back to the classical experiments of Kirkendall and their interpretation by Darken. 
We do show that when Darken constraints are used the general formulae reduce to the 
Darken expression. 

 
 

1 Introduction 
Studies of diffusion in gases and liquids were at the center of interest of scientists in the 
second half of the nineteenth century. In the twentieth century, diffusion in solids was a 
driving force for chemistry of solids. In this work we target on the self-consistent definition of 
the material reference frame and its use in mechano-chemistry. We focus here on the four 
discoveries in the 20th century that were crucial and irreversibly affected the theory of mass 
transport in solids: 
 
 1.  The concept of mobility and Nernst-Planck flux formula, 
 2.  Common occurrence of defects in solids (Frenkel and others), 
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 3.  The nonstoichiometry is a canon, not an exception in solids (Schottky and Wagner) and 
 4.  The lattice sites do not have to be conserved (Kirkendall and Darken).  
 
 Very recently, basing upon conflicts noted between tracer- and mass–velocity experiments 
Brenner has suggested that the fluid’s volume velocity (i.e., material velocity or drift velocity) 
is the proper internal frame of reference [1,2]. The experimental data on the thermal diffusion 
in binary liquid mixtures [3] support the applicability of the proposed revisions. According to 
Öttinger [4]: “Something is missing” in the currently accepted mass, energy and entropy 
transport equations of nonequilibrium irreversible thermodynamics [5, 6] and he proposed 
incorporating fluctuations into the friction matrix appearing in GENERIC theory [4]. 
Klimontovich included the self-diffusion-like contribution to the collision term in 
Boltzmann’s equation [7]. The independent theories of Öttinger and Klimontovich lead to 
identical results and are formally equivalent to Brenner concept of diffuse volume transport 
[1-3]. These foundlings imply fundamental conflict between the rational mechanics and 
irreversible thermodynamics concerning the specific momentum density. The proper 
definition of the material velocity is an open question [1] despite the previous arguments [8]. 
 In all our studies of mass transport we entirely based on the Darken concept [9] and its 
generalization [10], i.e., we based on the volume fixed reference frame for diffusion. First 
attempt to combine diffusion and stress based on the Euler’s view that was formulated ~250 
years ago. Namely, we accepted the velocity of the local mass centre, mυ , as an internal frame 
of reference for stress field [11]. The introduction of the partial Cauchy stress tensor [12] was 
unsuccessful in practical applications due to the unsolved conflict between the two different 
reference frames. In all papers concerned with mathematical description of mechano-chemical 
transport process (e.g., the interdiffusion under the stress field) we were not able to avoid the 
same conflict. Nevertheless, in these works we have generalized and consequently used the 
volume fixed reference frame to describe the diffusion in multicomponent alloys and solid 
solutions, including the compressible one. We also postulated the constitutive formula for the 
mechanical potential in multicomponent systems that is self-consistent with thermodynamical 
description [13]. 
 Expression mρυ  in the momentum flux was formulated by Euler 250 years ago [14]. It 
originates from the assumption that Newton’s laws of motion for solid body are also valid in a 
case of material domain of known mass density ρ  moving within a continuum. Euler was 
obviously unaware of the diffusion and hidden constitutive assumption implicit in the relation 

mρυ . Since then this relation was questioned only in a very few circumstances [15, 16]. The 
definitions of the overall velocities: the local mass centre velocity mυ , local concentration 
velocity Mυ , and local volume velocity υ , differ from each other and the selection of the 
proper reference frame for all internal processes (thermodynamics) is crucial.  
 Following Darken, Brenner and Öttinger’s theories we recently postulated that the volume 
velocity defines the local material velocity at nonequilibrium [17]. It allowed fixing the 
unique frame of reference for all internal transport processes, thermodynamics in general. No 
basic changes are required in the foundations of linear irreversible thermodynamics except 
recognizing the need to add volume density to the usual list of extensive physical properties 
undergoing transport in every continuum. 
 Using the Euler’s and Lagrange theorems we present here: 1) the rigorous derivation of the 
volume continuity equation, 2) the consistency of the Newton laws with thermodynamics in 
the volume fixed reference frame and 3) the equivalence of presented and Darken methods 
when Darken restriction are introduced. 
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2 The Volume Continuity, Conservation of Mass, Momentum and Energy 
We will consider a motion of a single phase r-component mixture, e.g., solid solution. We 
define the velocity field of the i-th component, [ ) 3 3: 0 R Ri    ,   υ ∞ × → , and its density of 
mass, [ ) 3: 0 R Ri     ,   ρ ∞ × → . The notation X  Y→  means that the domain of a function is a 
subset of  X.  Let Σ  denote any subregion of the mixture and for any time  t ≥ 0,  let ( )tΣ  to 
be the set of the points of that belonged toΣ  at the moment  t = 0. Thus, ( )0Σ = Σ . The theory 
must fulfill the following conditions: 
 

1. The local acceleration of the mixture depends on its mass, not on its internal energy. 
2. The local centre of mass position cannot be affected by any diffusion process (mass 

diffusion, heat transport, internal friction etc.). 
3. The volume velocity (i.e., the material velocity) is a unique internal frame of 

reference for all processes: diffusion [9,10], deformation, viscosity, heat transport 
etc. [1].  

4. The nonbalanced diffusion fluxes affect the local volume velocity [9]. 
 

 The Liouville transport theorem will be applied to obtain the volume continuity equation 
and the Darken drift velocity. It will be used to derive all conservation laws in a general case 
of a compressible, multicomponent mixture showing the different partial molar volumes. 
Transport theorem generalizes the Gauss-Ostrogradzki theorem and allows compressing the 
mathematics. 
 
Theorem. If [ ) 3 3: 0 R Ri     ,   υ ∞ × →  and [ ) 3 3: 0 R Ri     ,   ρ ∞ × →  are a sufficiently smooth 
functions defined on the domain of iυ ,  then 

 
( )

( )
( )

d d div grad d
d

i i
i i i i i i i i

t t

x x
t t t

ρ υρυ υ ρυ ρ υ υ
Σ Σ

⎛ ∂ ∂ ⎞⎛ ⎞ ⎛ ⎞= + + + ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
∫ ∫ .        (1) 

The proof of the above theorem can be found elsewhere [18].  

2.1 Extensive and intensive variables 

We consider the mass density, ( ),i i t xρ ρ= , the molar concentration, ( ),i ic c t x=  and the 
molar ratio, ( ),i iN N t x=  of every mixture component. The mass density, ( ),t xρ ρ= , the 
molar concentration, ( ),c c t x= , the molar volume, ( ),t xΩ = Ω , and the molar mass, 

( ),M M t x= , of the mixture are given by: 

 
1

:=
r

i
i

ρ ρ
=
∑  (2) 

 
1 1

1:
r r

i
i

i i i

c c
M M
ρ ρ

= =

= ≡ ≡ ≡
Ω∑ ∑  (3) 

 :i iN c c=  (4) 

where Mi denotes the molar mass of the i-th component. Volume occupied by the mixture at 
given temperature and pressure, Ω*, is an extensive variable [19]. If we write: 

 ( )1, ... , ; ,   rN N T pΩ = Ω  (5) 
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as the equation of state of the system giving the molar volume in terms of independent 
variables: N1, … , Nr  and T, p,  we have then for an arbitrary volume Ω* and number of moles 
n1, …, nr 

  ( ) ( )1 1* ,..., ; , * ,..., ; ,r rkn kn T p k n n T pΩ = Ω  (6) 

which express the fact that the system at a temperature T, pressure p, and containing 
kn1, …, knr moles of components occupies a volume kΩ*. This relation is identically satisfied 
whatever may be the values of  T, p, n1, …, nr  and k,  i.e., the factor  k  multiplies the 
extensive variables  n1, …,  nr  and functions  Ω* and  Ω  are homogeneous of the first degree 
with respect to composition, e.g., the number of moles: n1, … , nr. Thus, the Euler’s theorem 
can be applied in further analysis.1 This theorem states that the function f(x1, …, xr, …) is 
called homogeneous of the m-th degree in the variables x1,…,xr if the identity: 
( ) ( )1 1, ... , ; ... , ... , ; ...m

r rf kx kx k f x x≡  holds [19]. If we differentiate this definition with 
respect to k the next identity follows 

 ( ) ( )1 1
1

1

,..., ;...
,..., ;...

r
r m

i r
i i

f kx kx
x mk f x x

kx
−

=

∂
≡

∂∑  (7) 

 ( ) ( )1
1

1

,..., ;...
,..., ;...    when    1

r
r

i r
i i

f x x
x m f x x k

x=

∂
≡ =

∂∑ . (8) 

Eqn. (8) is called Euler’s theorem. From the theory of partial differential equations it follows 
that conversely any function  f(x1,…, xr; …) which satisfies eqn. (8) is homogeneous of the 
m-th degree in  x1, …, xr [20]. In what follows we are concerned with: 
 
i) homogeneous functions of the first degree, m = 1. In such a case 

 ( ) ( )1 1,..., ;... ,..., ;...r rf k x k x k f x x≡  (9) 

and eqn. (8) becomes: 

 ( ) ( )1
1

1

,..., ;...
,..., ;...

r
r

i r
i i

f x x
x f x x

x=

∂
≡

∂∑  (10) 

ii) homogeneous functions of the zero degree, m = 0. In such a case 

 ( ) ( )1 1,.., ;... ,..., ;...r rf k x k x f x x≡  (11) 

and eqn. (8) becomes: 

 ( )1

1

,..., ;...
0

r
r

i
i i

f x x
x

x=

∂
≡

∂∑  (12) 

Comparing eqns. (5), (6) and (9) we see that Ω and Ω* are homogeneous functions of the first 
degree in the independent variables N1,…, Nr. Consequently, from eqn. (10) it follows: 

 ( ) ( )1
1

1

,..., ; ,   
,..., ; ,

r
r

i r
i i

N N T p
N N N T p

N=

∂Ω
≡ Ω

∂∑ . (13) 

Differentiating above identity with respect to Nj  at constant T and p we have: 
  
                                                 
1 In what follows we do neglect the dimensions of the body and surface energy, e.g., interfaces, grain boundaries, 
etc.  
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1

r

i
i i j j j

N
N N N N=

∂Ω ∂Ω ∂Ω
+ ≡

∂ ∂ ∂ ∂∑ , (14) 

whence 

 
2

1
0

r

i
j i j

N
N N=

∂ Ω
≡

∂ ∂∑ . (15) 

Upon introducing the usual definition of the partial molar volume Ωi: 

 ( ) ( )1,..., ; ,
, : r

i i
i

N N T p
T p

N
∂Ω

Ω = Ω =
∂

 (16) 

eqn. (13) can be written in usual, concise form 

 
1

r

i i
i

N
=

Ω ≡ Ω∑ , (17) 

which gives the relation between the molar volume of the mixture and partial molar volumes 
of the components. Relation between partial molar volumes, eqn. (15), upon combining with 
eqn. (16) becomes: 

 
1

0
r

i
i

i j

N
N=

∂Ω
≡

∂∑ . (18) 

From the above identity it follows that partial molar volumes depend on each other. For 
binary system at constant temperature and pressure one gets: 

 1 2
1 2

1 1

0N N
N N

∂Ω ∂Ω
+ ≡

∂ ∂
 (19) 

Upon comparing  eqns. (12) and (18) it is obvious that partial molar volumes are homoge-
neous functions of the zero degree (m = 0) and  

 ( ) ( )1 1,..., ; , ,..., ; ,   for all  i r i rkn kn T p n n T p iΩ =Ω  (20) 

Thus, the partial molar volumes are intensive variables and can be expressed as functions of 
the other intensive variables, e.g., T, p, N1, … ,Nr 
 The overwhelming majority of authors dealing with interdiffusion in solids simplifies the 
problem and assumes constant and/or equal partial molar volumes. In general case it is 
obvious that volume is not conserved. From definition (3) and identity (17) the following 
identities hold: 

 
1 1 1 1

1
r r r r

Vi i i
i i i i

i i i i

cN c
c

ρ
= = = =

Ω Ω
≡ ≡ Ω ≡ ≡

Ω Ω∑ ∑ ∑ ∑  (21) 

the variable  V
i i ic ρΩ =   is the volume density of the i-th component. Thus, we have shown 

that the volume density of the arbitrary multicomponent mixture is conserved and equals one2, 
eqn. (21). The fluxes and velocities of the local centre of mass, ,mυ composition, Mυ  and 
volume, υ , are defined by respective densities: 

 
1 1 1

    and     :
r r r

m m m i
i i i i

i i i

J ρρυ ρυ υ υ
ρ= = =

= = =∑ ∑ ∑ ,   (22) 

                                                 
2 Unless we consider/allow the formation of the cracks and/or voids. 
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1 1 1

      and      :
r r r

M M M i
i i i i

i i i

cc J c
c

υ υ υ υ
= = =

= = =∑ ∑ ∑ ,          (23) 

1 1 1

      and      :
r r r

V i i
i i i i i

i i i

cc J c
c

υ υ υ υ
= = =

Ω
Ω = = Ω =

Ω∑ ∑ ∑ ,             (24) 

where  and i ic cΩ Ω  denote the total ( )1cΩ ≡  and partial volume densities, compare eqns. (20) 
and (21). 
Above velocities differ from each other and the local mass centre velocity given by eqn. (22), 

mυ , must be reconsidered as an adequate description of the local momentum flux [1], e.g., 
compare the expressions   vs.     and  m Mρυ ρυ ρυ . We will show that only the volume 
velocity, eqn. (24), can serve as a unique reference frame for all internal processes 
(thermodynamics), e.g., the mass diffusion processes, heat transport, deformation etc. 

2.2 Diffusion 

The diffusion velocity of every component can be expressed by an appropriate formula, e.g., 
by the Nernst-Planck equation [21, 22], 1st Fick law [23], Onsager flux [24] or the mechano-
chemical flux [13]: 

( )grad     where   Fd ch el el
i i i i i iB z Vυ μ μ μ= − + = ,                             (25) 

grad lnd
i i iD cυ = − ,                                                           (26) 

1

1 k
d
i ij j

ji

L X
c

υ
=

= ∑ ,                                                            (27) 

( )
0

0
1

grad grad   where   
r

d ch ch m mi
i i i i i i i i

i

B p B c pυ μ μ μ μ
=

⎛ ⎞Ω
= − + Ω = − + =⎜ ⎟Ω⎝ ⎠

∑ ,    (28) 

where , ,i i iB D z  denote mobility, diffusivity and valence of the i-th component, respectively. F 
and V are the Faraday constant and electric potential. ( ),t xΩ = Ω  is the molar volume of the 
mixture, 0Ω and 0

iΩ denote molar volumes of the mixture and of the i-th component at 
standard conditions.3 In what follows we use the mechano-chemical flux formula, eqn. (28).  
The local drift velocity in the mixture, drift ,υ  is a result of the deformation, ,συ of the Darken 
drift due to diffusion, Dυ  and translation, trυ  

drift D trσυ υ υ υ= + + .                                                         (29) 

 The Darken’s drift, ,Dυ denotes the local common velocity generated within a mixture by 
nonbalanced diffusion fluxes: 

1
0,r d

ii
J

=
≠∑ [9,10]. In what follows all velocities denote the 

volume velocity. 

2.3 Volume Continuity Equation and Darken Drift  
In nonreversible thermodynamics the molar volumes are intensive parameters and are not 
conserved, Eqs. (5) and (20). However, these properties are transported by the velocity field 
of every mixture component. Contrary, the molar volume density of the mixture equals one is 
conserved during an arbitrary transport process in continuum, eqn. (21). From eqn. (21) it 
follows: 
                                                 
3 The standard molar volumes of the mixture can be given by an appropriate constitutive equation, e.g., by 
Vegard’s law: 0 0

1
:

r

i ii
N

=
Ω = Ω∑  
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( ) ( )1

d dd d 0
d d

r

i i
it t

c x c x
t t=Σ Σ

Ω = Ω =∑∫ ∫ .                                              (30) 

Unfortunately, eqn. (30) is irrelevant to transport process. One need to know the time 
evolution of the volume velocity in order to separate the all internal processes from the 
momentum of the mixture itself and to define the unique internal reference frame for all local 
transport processes [1]. The partial molar volumes as well as partial volume densities are non-
conservative properties and evolution of the partial volume density, V

i i icρ = Ω , occurs during 
the transport, eqn. (24). Only the total volume density must be conserved4, eqns. (3) and (30). 
The partial molar volume density is defined on the domain of iυ . Consequently, from the 
Liouville transport theorem, eqn. (1), and relation (30) it follows: 

( ) ( )1 1 1

d d div d 0
d

r r r
i i

i i i i i
i i it t

cc x c x
t t

υ
= = =Σ Σ

⎛ ⎞∂ Ω ⎛ ⎞Ω = + Ω =⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠
∑ ∑ ∑∫ ∫ .                              (31) 

Combining eqns. (21) and (31) and since the subregion ( )tΣ   was chosen arbitrarily, then: 

1

div 0
r

i i i
i

c υ
=

⎛ ⎞Ω =⎜ ⎟
⎝ ⎠
∑ .                                                     (32) 

Above relation can be called the volume continuity equation or the law of conservation of the 
molar volume density, cΩ .  
 Eqn. (32) allows analyzing an arbitrary transport process in the multicomponent mixture. 
Let us consider the diffusion process in compressible multicomponent mixture: 

d
i i i i i ic cυ υΩ = Ω , for i =1, 2,…, r. Kirkendall experimentally [25], Darken theoretically in 

binary alloy [9] and one of the authors in multicomponent solid mixtures [10] have shown 
that the local sum of diffusion fluxes has not to be zero or constant, ( )1

div 0r d
i i ii

c υ
=

Ω ≠∑  i.e., 
the law of conservation of lattice sites does not exist [9]. Thus, the volume continuity implies 
that the “new” average velocity, Darken velocity, Dυ , has to be generated during, such “pure” 
diffusion process and from eqn. (32) it follows: 

( ) ( ) ( )

1 1 1

1 1

div div

,

r r r
D d D d

i i i i i i i i
i i i

r r
D d tr d tri i

i i i i
i i

c c c c

ct x t c t
c

υ υ υ υ

υ υ υ υ υ

= = =

= =

⎛ ⎞ ⎛ ⎞
Ω + Ω = Ω + Ω ⇒⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
Ω

= − + = − Ω +
Ω

∑ ∑ ∑

∑ ∑
                         (33) 

the Darken drift velocity, Dυ , is a volume average velocity generated by diffusion and ( )tr tυ  
is the translation velocity. In the same manner we will define the local diffusion velocity of 
the mixture, dυ , as volume velocity of the diffusion: 

1

r
d d d

i i i
i

c cυ υ υ
=

Ω = Ω =∑ .      (34) 

Using eqns. (24) and (34) allows adding the fluxes of the all mixture components5 

( )
1 1

r r
D tr d D tr d D tr di i i i

i i
i i

c c
c c

σ σ συ υ υ υ υ υ υ υ υ υ υ υ υ
= =

Ω Ω
= + + + = + + + = + + +

Ω Ω∑ ∑ .     (35) 

                                                 
4 Unless voids and/or cracks are formed. 
5 In this work we do consider the deformation, translation and Darken velocities. Their sum results in the drift 
velocity in the mixture. Incorporation velocity due to the thermal expansion, etc. does not affect the formalism. 
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Eqn. (35) defines the flux of the i-th component in the volume fixed reference frame: 

D tr d drift d drift di i
i i i i i i i i i i i i iJ c c c c c c c c Jσυ υ υ υ υ υ υ υΩ Ω
= = + + + = + = +

Ω Ω
.          (36) 

where drift D trσυ υ υ υ= + +  and d
iJ  are the drift velocity and the diffusion flux of the i-th 

component in the volume fixed reference frame. Note that common for all components drift 
velocity is affected by all internal process.  

2.4 Conservation of Mass  

The molar mass of the mixture component, mi(t), contained in ( )tΣ  at the moment  t  is: 

 ( )
( )

di i
t

m t c x
Σ

= ∫     (37) 

The principle of conservation of mass states that the mass in ( )tΣ  is conserved.6 Thus, 

 
( )

d d 0
d i

t

c x
t Σ

=∫ .   (38) 

By Liouville theorem ( )1i  υ ≡  from (1) and (38) we get, 

( )
( )

( )

d d div d 0
d

i
i i i

t t

cc x c x
t t

υ
Σ Σ

∂⎛ ⎞= + =⎜ ⎟∂⎝ ⎠∫ ∫ ,                                       (39) 

Since the subregion ( )tΣ   was chosen arbitrarily, then  

( )div 0i
i i

c c
t

υ∂
+ =

∂
,                                                             (40) 

Upon summing up for all components partial continuity equations, eqns. (40), one can get the 
global conservation law: 

( )div 0c c
t

υ∂
+ =

∂
,                                                             (41) 

Equations (40) and (41) are known as the partial and global continuity equations. 

2.5 Balance of Momentum  
The momentum of a multicomponent mixture in an evolving subregion ( )tΣ  is: 

( )
( ) 

momentum in  = d  .
t

t xρυ
Σ

Σ⎡ ⎤⎣ ⎦ ∫                                                (42) 

By the Newton’s law the rate of momentum change in ( )tΣ  equals the total force acting on 
mass in ( )tΣ : 

( )
total

 

d  d  .F d t

x
t

ρυ
Σ

= ∫                                                            (43) 

We assume that the following forces act on the mass in ( )tΣ 7: 
 

                                                 
6 To simplify the relations, in this work we do not consider the chemical and/or nuclear reactions in the mixture, 
i.e., we do neglect the local sources and sinks of mass. 
7 We do not consider here the electromagnetic field. e.g., the diffusion of the charged species (ions). 
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1. The force of elastic stress,  Fσ ,  acting on the surface ( )t∂Σ  

    
( ) ( )

 = d div dF e e

t t

x xσ σ σ
∂Σ Σ

=∫ ∫ ,                                                      (44) 

where [ ): 0,eσ ∞ ×⎥3  →L(⎥3,⎥3)is the stress tensor and L(⎥3,⎥3) is the space of linear mappings 
from ⎥3 to ⎥3 [15]. In eqn. (44) we postulate that the mechanical properties of the mixture, the 
temperature and its entropy, are represented by the average values. The deformation velocity 
is given by: 

u
t

σ
συ ∂
=

∂
                                                                         (45) 

where uσ  denotes the deformation vector of the mixture. 
 
2. The viscosity force acting on the mass in ( )tΣ , is a result of the non-uniform volume 
velocity field. The area was extensively studied and the vast number of constitutive equations 
is known [15]. Here it is sufficient to use the basic expression: 

( )
( )

( ) ( )
F grad nd div grad d div ddrift drift p

t t t

a x xν η υ η υ σ
∂Σ Σ Σ

= − ⋅ = − =∫ ∫ ∫ .                  (46) 

3. The net chemical force acting on mass in ( )tΣ . This part of the stress tensor is called the 
stress free deformation tensor8 [26]. In nonideal systems the net chemical force equals: 

( )

r

chem
1

F grad dch
i i

i t

c xμ
= Σ

= −∑ ∫ ,                                                    (47) 

4. The external force,  fext
 ,  acting on the mass in the volume ( )tΣ  is given by: 

( ) ( )
ext

  

  d grad dF ext ext

t t

f x V xρ ρ
Σ Σ

= = −∫ ∫ .                                              (48) 

An external force can be, e.g., the gradient of a gravitational potential, ext extf V= −∇ . 
The total force acting on mass in ( )tΣ   is the sum of all forces listed above. Consequently: 

total chem extF  F F F Fσ ν= + + +                                                             (49) 

Applying the formulae (42) and (44) … (49) results in: 

( ) ( ) ( ) ( ) ( )

r

1  

d d div d div d grad d grad d
d

e p ch ext
i i

it t t t t

x x x c x V x
t

ρυ σ σ μ ρ
=Σ Σ Σ Σ Σ

= + − −∑∫ ∫ ∫ ∫ ∫ .       (50) 

Using the Liouville theorem the left hand side of eqn. (50) becomes: 

( )
( )

( )

( )
( )

( )
( )

d d div grad d
d

div grad d div d .

t t

t t

x x
t t t

x x
t t

ρ υρυ υ ρυ ρ υ υ

ρυ ρυυ ρυ ρυ υ ρυ υ

Σ Σ

Σ Σ

⎛ ∂ ∂ ⎞⎛ ⎞ ⎛ ⎞= + + + ⋅ =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

∂ ∂⎛ ⎞ ⎛ ⎞+ + ⋅ = + ⊗⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∫ ∫

∫ ∫
             (51) 

Substituting eqn. (51) into eqn. (50) one gets 

                                                 
8 The stress free deformation tensor equals zero in a case of an ideal mixture. 
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( )
( ) ( ) ( ) ( ) ( )

r

1

div d div d div d grad d grad de p ch ext
i i

it t t t t

x x x c x V x
t
ρυ ρυ υ σ σ μ ρ

=Σ Σ Σ Σ Σ

∂⎛ ⎞+ ⊗ = + − −⎜ ⎟∂⎝ ⎠
∑∫ ∫ ∫ ∫ ∫ (52) 

Since the subregion ( )tΣ  was chosen arbitrarily one can omit integrals and eqn. (52) 
becomes: 

( )
r

1
div div +div grad grade p ch ext

i i
i

c V
t
ρυ ρυ υ σ σ μ ρ

=

⎛ ⎞+ =⎜ ⎟
⎝ ⎠
∂ ⊗ − −
∂ ∑ .                  (53) 

Upon using continuity equation, eqn. (40), it is easy to show that 

( )
1

D div grad grad
D

r
e p ch ext

i i
i

c V
t υ

υρ σ σ μ ρ
=

= + − −∑ .                                      (54) 

Equations (53) and (54) we shall call the equation of motion.  

2.6 Balance of Energy 

The total energy of the mixture in ( )tΣ  can be written: 

( ) ( ) ( ) ( )

( )

                                    

total  energyof kinetic internal potential
 mass in energy energy  energy

k I Pe t e t e t e t

t

= + +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥Σ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

The kinetic energy contained in the moving subregion ( )tΣ  with a velocity υ  is: 

( )
( )

21
2k

t

t dxe ρυ
Σ

= ∫ .                                                                 (55) 

We shall use the fundamental canonical equation of thermodynamics: 

( )*
1 2, , , ,..., rU U S m m m= Ω  

It is convenient to analyze the transport in unit volume moreover, the volume, *Ω , is 
considered as the reference frame. Thus: 

( )v v v
1 2, , ,..., rsε ε ρ ρ ρ=  

where v vand sε denote the internal energy and the entropy that are expressed per unit volume. 
Consequently, the fundamental canonical equation of thermodynamics becomes 

( )v v
1 2, , ,..., rsε ρε ε ρ ρ ρ ρ= =                                                      (56) 

ε and s are an internal energy and entropy per mass unit. Transition from fundamental 
canonical form to the eqn. (56) implies introduction of the mechanical potential. In such a 
case, the Gibbs equation becomes: 

( ) ( ) ( ) ( )* 1

1 1

d d d d dc
i

r r
ch m

i i i i i
i i

T s M T sρε ρ μ ρ ρ μ μ−

= =

= + = + +∑ ∑                           (57) 

ch
iμ , * and m

i iμ μ  are the chemical, mechanical and mechanochemical potentials of compo-
nents. The mechanical potential due to the deformation can be given by any proper formula, 
e.g., by eqn. (28). The integral form of the Gibbs equation follows from eqn. (57): 
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*

1 1 1
i

r r r
ch m

i i i i i
i i i

Ts c Ts c cρε ρ μ ρ μ μ
= = =

= + = + +∑ ∑ ∑ .                                        (58) 

Thus, from eqn. (58) the internal energy of mass contained by ( )tΣ  is given by: 

( ) ( ) ( )

*
I

1 1 1

 = d d d
i

r r r
ch m

i i i i i
i i it t t

x Ts c x Ts c c xe ρε ρ μ ρ μ μ
= = =Σ Σ Σ

⎛ ⎞ ⎛ ⎞= + = + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑∫ ∫ ∫                (59) 

The potential energy of mass in ( )tΣ  is represented by its potential per the mass unit, 

( )
 d  .ext

P
t

e V  xρ
Σ

= ∫                                                                (60) 

By the First Law of Thermodynamics the total energy of mass contained by ( )tΣ  can be 
affected by the heat flow and the work done on it. Thus, from eqns. (55) … (60): 

( )

( ) ( ) ( ) ( )
( )

2

1

*d 1              d
dt 2

d d div d div d

r
ext

i i
it

e p e p
q q

t t t t

Ts c V x

a a J x J x

ρυ ρ μ ρ

σ υ σ υ σ υ σ υ

=Σ

∂Σ ∂Σ Σ Σ

⎛ ⎞+ + + =⎜ ⎟
⎝ ⎠

= ⋅ − ⋅ − = ⋅ + ⋅ −

∑∫

∫∫ ∫ ∫
                     (61) 

where Jq denotes the heat flux, which is given by the proper constitutive formula. 
Applying the Liouville theorem eqn. (61) becomes: 

( )

( )
( )

( )
( )

( )

2 * 2 *

1 1

1 1div d
2 2

                     div d div d div d

r r
ext ext

i i i i
i it

e p
q

t t t

T s c V Ts c V x
t

x x J x

ρυ ρ μ ρ ρυ υ ρυ υ μ ρυ

σ υ σ υ

= =Σ

Σ Σ Σ

⎛ ⎞∂ ⎛ ⎞ ⎛ ⎞
+ + + + + + + =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎝ ⎠

= ⋅ + ⋅ −

∑ ∑∫

∫ ∫ ∫
 (62) 

Since the subregion ( )tΣ  was chosen arbitrarily, the integral in eqn. (62) can be omitted and 
using the mass continuity equation, it can be written in the condensed form as 

 ( ) ( )
*

2

1

D 1 div div div
D 2

r
ext e pi

i q
i i

Ts V J
t M

υ

μρ υ σ υ σ υ
=

⎛ ⎞
+ + + = ⋅ + ⋅ −⎜ ⎟

⎝ ⎠
∑           (63) 

The left hand side of the eqn. (63) can be rearranged to 

( ) ( )
*

1

D D div div div
D D

r
ext e pi

i q
i i

Ts V J
t t Mυ υ

υ μρυ ρ σ υ σ υ
=

⎛ ⎞
+ + + = ⋅ + ⋅ −⎜ ⎟

⎝ ⎠
∑                 (64) 

Upon multiplying the momentum conservation equation, eqn. (54), by the volume velocity υ  
we have: 

( )
1

D div grad grad
D

r
e p ch ext

i i
i

c V
t υ

υρυ υ σ σ υ μ ρυ
=

= + − −∑                                 (65) 

Consequently, upon combining eqns. (60), (64) and (65), the equation of the internal energy 
conservation becomes: 

*

1 1

D : grad : grad grad grad div
D

r r
ext e p ch exti

i i i q
i ii

Ts V c V J
t M

υ

μρ σ υ σ υ υ μ ρυ
= =

⎛ ⎞
+ + = + + + −⎜ ⎟

⎝ ⎠
∑ ∑ .   (66) 
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When an external force field does not depend on time, ( )( )ext extV V x= , it further reduces to: 
*

1 1

DD D :grad :grad grad div
D D D

r r
e p chi

i i i q
i i

Ts c c J
t t tυ υ υ

μερ ρ σ υ σ υ υ μ
= =

= + = + + −∑ ∑ ,        (67) 

The formulae (66) and (67) express the first law of thermodynamics in multicomponent 
continuum.  
 
2.7 Separation of mechanical and thermal terms 

The separation of the entropy and mechanical energy terms in eqn. (67) is convenient in many 
applications [15]. Thus, one can write eqn. (67) as: 

*

1 1

D : grad grad
D

r r
e chi

i i i
i i

c c
t υ

μ σ υ υ μ
= =

= +∑ ∑                     (68) 

                           D : grad div
D

p
q

Ts J
t υ

ρ σ υ= −                      (69) 

To complete the separation of the mechanical and entropy terms, Eqs. (68) and (69) must be 
extended to include the dissipation of energy due to the diffusion [15]. From eqns. (56) and 
(57), the Gibbs-Duhem relation has the form: 

( )*

1 1

d d d
i

r r
ch m

i i i i
i i

s T c cρ μ μ μ
= =

= − = − +∑ ∑                                               (70) 

and the energy dissipated due to the diffusion, i.e., the work done by the chemical forces 
(diffusion forces) equals: 

*

1

grad
r

d
diffusion i i i

i

w cυ μ
=

= −∑                                                       (71) 

This work has to be included into the energy balance, eqns. (68) and (69), in such a way that it 
will not change the total energy conservation equation, eq. (67) [15]. Consequently we get: 

*
*

1 1 1

D : grad grad grad
D

r r r
e ch di

i i i i i i
i i i

c c c
t υ

μ σ υ υ μ υ μ
= = =

= + +∑ ∑ ∑ ,                         (72) 

*

1

D : grad div grad
D

r
p d

q i i i
i

Ts J c
t υ

ρ σ υ υ μ
=

= − −∑ .                                  (73) 

The last terms in eqns. (72) and (73) describe the fact that diffusion does not affect internal 
energy of the mixture. Entropy is produced at the expense of mechanical energy of the 
mixture. One may note that, upon adding eqns. (72) and (73) we get eqn. (67). 

3 Summary 

The drift velocity is the unique frame of reference for the diffusion and the volume continuity 
equation allows defining it quantitatively: 

1 1 1

div div div 0
r r r

drift d drift d
i i i i i i i i

i i i

c c Jυ υ υ υ
= = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞Ω = + Ω = + Ω =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ . 
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The local momentum density depends on the diffusion of mass as well as on all other 
transport processes. However, the momentum due to the diffusion can be locally compensated 
by the Darken velocity. In such a case the overall volume velocity in the momentum balance 
is: trσυ υ υ= + . Such form of the balance of momentum, eqn. (54), fulfills the condition, that 
the local acceleration of the body depends on its mass, not on its internal energy and that the 
local centre of mass position is not affected by diffusion. 
 When the pure diffusion in ideal solid solution is considered then: ( ) ( )0, 0, 0x xσυ υ= =  
and ( )0, 0tr xυ = , the concentrations are equal to the activities i ic a=  and .c const=  
Consequently, the term that describes nonbalanced chemical potentials, eqn. (47), equals zero: 

r r r

1 1 1

grad grad ln grad grad 0
i ia c

ch
i i i i i

i i i

c c RT a RT c RT cμ
=

= = =

= = = =∑ ∑ ∑ .                  (74) 

From eqn. (54) it follows that centre of mass position is not affected by diffusion: D 0
Dt υ

υρ =  

Eqn. (33) allows analyzing an arbitrary transport process. Let us consider the Darken’s 
diffusion in non-compressible multicomponent solution where i constΩ =Ω =  for every 
component. Thus, from eqns. (3) and (33), the Darken velocity equals: 

( )
1 1

1,
r r

D d d
i i i i i

i i

t x c c
c

υ υ υ
= =

= − Ω = −∑ ∑  

Thus, we have proved the identity of the presented and Darken methods when Darken 
constraints are valid.  
 
Acknowledgment. This work has been supported by the Ministry of Higher Education and Science in 
Poland, project COST/247/2006s. 

References 
                                                 
[1] H. Brenner, Physica A 370 (2006) 190. 
[2] H. Brenner, Physica A 349 (2005) 10. 
[3] J. R. Bielenberg, H. Brenner, Physica A 356 (2005) 279. 
[4] H. C. Öttinger, Beyond Equilibrium Thermodynamics, Wiley, New Jersey, 2005. 
[5] S. R. De Groot, P. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam, 

1962. 
[6] G. D. C. Kuiken, Thermodynamics of Irreversible Processes: Applications to Diffusion and 

Rheology, Wiley, New York, 1994. 
[7] Yu. L. Klimontovich, Statistical Theory of Open Systems, Volume 1: A Unified Approach to 

Kinetic Descriptions of Processes in Active Systems, Kluwer Academic Publishers, Dordrecht, 
1995. 

[8] H. Brenner, Physica A 349 (2005) 60. 
[9] L. S. Darken, Trans. A.I.M.E. 174 (1948) 184. 
[10] K. Holly, M. Danielewski, Phys. Rev. B 50 (1994) 13336. 
[11] M. Danielewski, W. Krzyżański, Phys. Stat. Sol. 145 (1994) 351. 
[12] M. Danielewski, B. Wierzba, J. Phase Equlibria and Diffusion 26 (2005) 573. 
[13] M. Danielewski, B. Wierzba, R. Bachorczyk-Nagy, M. Pietrzyk: J. Phase Equlibria and 

Diffusion 27 (2006) 691. 
[14] C. Truesdell, Amer. Math. Monthly 60 (1953) 445. 
[15] L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd  ed., Butterworth-Heinemann, Oxford, 

1987. 
[16] P. Kofstad, M. Liu, Phys. Rev. E 58 (1998) 5535. 



Danielewski et al., Interdiffusion Revisted  diffusion-fundamentals 
   www.diffusion-online.org 

Diffusion Fundamentals 8 (2008) 11.1 – 11.14  © 2008, M. Danielewski 

                                                                                                                                                         
[17] M. Danielewski, B. Wierzba, Physica A, 387 (2008) 745. 
[18] A. J. Chorin and J. E. Mardsen, A Mathematical Introduction to Fluid Mechanics, Springer-

Verlag, New York 1990. 
[19] R. J. Borg, G. J. Dienes, The Physical Chemistry of Solids, Academic Press, New  York 1992, 

pp. 571–573.  
[20] T. Chaundy, The Differential Calculus (Oxford, 1935), p. 157. 
[21] W. Nernst, Z. Phys. Chem. 4 (1889) 129. 
[22] M. Planck, Ann. Phys. Chem. 40 (1890) 561. 
[23] A. E. Fick,  Prog. Ann. 94 (1855) 59. 
[24] I. Prigogine, Nature, 246 (1973) 67. 
[25] E. O. Kirkendall, Trans AIME 147 (1942) 104. 
[26] G. B. Stephenson,  Acta metall. 36 (1988) 2663. 

Galileo
Rectangle


