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Abstract. The modelling of electro-diffusion in the multicomponent system in open 
space and time domains has been only recently addressed and made numerous applica-
tions in biology, fuel cells, electrochemical sensors and reference electrodes possible. In 
this work we show the numerical simulations of electrical potential over time and result-
ing electrochemical impedance spectra of ion-selective membrane electrodes (ISE’s). The 
numerical results are obtained by use of the coupled Nernst-Planck, Poisson and continu-
ity equations (forming the NPP model). The equations are solved by means of the finite 
difference method, the Rosenbrock solver with the use of Matlab (by MathWorks) plat-
form. The potential-time response of the ISEs in open- and closed-circuit conditions as a 
function of varying heterogeneous rate constants, ionic concentrations and membrane 
thickness are computed. The potential-time response to small-current perturbation is ap-
plied for simulations of the impedance spectra. The results obtained show that the mem-
brane with Nernstian response presents only one capacitive arc in the impedance spectra, 
related to conductivity and dielectric properties of the membrane material. Non-Nernstian 
behaviour is related to slow ionic transport through the membrane|solution interfaces and 
is manifested by the appearance of an additional (capacitive) arc between the high-
frequency bulk and the low-frequency (Warburg) arcs. The presented approach directly 
relates the diffusivities in the membrane and the interface properties (heterogeneous rate 
constants determining the transport across interfaces) to the characteristic properties of 
the impedance spectra (characteristic radial frequencies). It is concluded that the Matlab 
platform allows solving the NPP problem and simulating the non-linear effects in electro-
diffusion in a convenient way.  

 

1  Introduction 
Electrochemical impedance spectroscopy (EIS) is of great importance in the analysis of elec-
trochemical systems, such as sensors and biomembranes, batteries and fuel cells,  as well as in 
dedicated studies of charge transfer and corrosion mechanisms, electrode kinetics or a double-
layer. This technique is based on the disturbance of the electrochemical reaction from its 
steady-state by applying a small perturbation to the system. The relaxation of the system to 
reach the another steady-state allows analyzing its time response with respect to the time con-
stant of each elementary process [1]. 
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Mass conservation laws, the Nernst-Planck flux formulae and Poisson equation form fun-
damental system of equations (NPP) that allows calculating full time response of the ion-
selective electrode (ISE) and impedance spectra without approximate assumptions, e.g., linear 
dependence of potential and concentrations on position. The second great advantage of the 
NPP is that it relates directly simulated impedance spectra to physico-chemical parameters of 
the system. Thus, the usual analysis of equivalent circuit gets new possibilities. 

This work presents simulated impedance spectra calculated on the basis of NPP problem 
for two different systems, multi- and bi-ionic case.    

2  Theory 
2.1  Model 
The considered system consists of two bathing solutions and the membrane, Fig. 1. The 
membrane is assumed to be flat, isotropic and of thickness d [2]. These assumptions are 
equivalent the one-dimensional NPP problem. Diffusivities, dielectric permittivity and thick-
ness are assumed to be constant. The convection of the solvent in membrane is ignored. 

 

Left bathing
solution

Right bathing
solutionMembrane

0                        d                               x

 
 
 
Fig. 1: Schematic representation of the considered 
system. 

 

The initial-boundary value problem for one dimension is given by the set of equations known 
as the Nernst-Planck-Poisson problem. Ionic fluxes are expressed by [3-6] (list of symbols is 
included in Appendix):  
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The evolution of the electric field is represented by the Poisson equation: 
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where 
( ) ( ), ,i ii
t x F z c t xρ = ⋅∑   

denotes the charge density. The mass conservation law describes the evolution of concentra-
tions: 
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In this work, the Poisson equation is replaced by its equivalent form, the total current equation 
in the form proposed by Cohen and Cooley [7]: 
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Fluxes of ions at the membrane interfaces are given by Chang-Jaffe boundary conditions [8]: 

 
( ) ( )
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, ,
i i i i i

i i i i i

J t k c k c t
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Initial concentrations obey the electro-neutrality condition and consequently initially there is 
no space charge in the membrane [2]:  

( ) ( )00,i ic x c x= , (0, ) 0E x =  for [ ]0,x d∈ . 

The membrane potential, ( )V t , is given by [9]: 

 ( ) ( )
0

,
d

V t E t x dx= −∫  (6) 

Eqns. (1) to (5) were converted into a finite difference form with the space grid containing 
closely spaced points near the interfaces and a distinctively wider spacing inside the mem-
brane. Above initial boundary-value problem was solved numerically in Matlab 7.1 using 
implicit Rosenbrock algorithm (ode23s in Matlab). 

2.2 Electrochemical Impedance Spectroscopy 
The impedance of a system can be determined from the linear response of the system to a 
small-current perturbation. In this work:   
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From eqns. (7) the potential–time response, ( )V t , and impedance ( ) ( ) ( )Z t V t I t=  are com-
puted. The Fourier transforms of the current perturbation and of the impedance are given by: 
 

( ) ( ) ( )* ' "I I jIω ω ω= + , 

where ( )' 0I ω =  and ( ) 0"I Iω ω= − , and 

( ) ( ) ( )* ' "Z Z jZω ω ω= + , 

where ( ) ( ) 0' "Z V Iω ω ω= − ⋅  and ( ) ( ) 0" 'Z V Iω ω ω= ⋅  

Following Brumleve and Buck [9] we transform ( )V t  by evaluating cosine and sine integrals: 

 ( ) ( )( ) ( ) ( ) ( )( ) ( )
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ω

∞ ∞
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3 Results 
3.1 Multi-Ionic Case 
In this case the system of three ions is considered. Namely, the system consists of main ion 
J2+, weakly interfering ion, I+, that is partially blocked at the interfaces and charged ionic site 
R−, which is restricted only to the membrane and is blocked at interfaces. The impedance 
spectra, Fig. 4, were calculated on the basis of data as presented in Table 1. 
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Fig. 4 shows that the resistance of the system decrease when concentration of main ion in-
crease. This behavior is obviously a result of increased conductivity. This plot shows the 
presence of two arcs: a high-frequency bulk arc (related to the properties of the membrane) 
and the characteristic finite Warburg impedance arc at low frequencies (due to diffusion in the 
membrane). It is worth notice that for the highest and lowest concentrations of primary ion 
arcs overlap. 
 

Fig.  4. Simulated complex impedances for different concentrations of primary ion [J2+] in left bathing solu-
tion. Radial frequency range: ω = 10−4 – 108 [Hz], I0 = 10−4 [Am−2]. 

3.2  Bi-Ionic Case 

Bi-ionic case has a practical importance in determining selectivity of the ISE. In this case sys-
tem of two cations, J+, I+, and one anion, R−. is considered. The value of diffusion coefficient 
for main ion, J+, exceeds by one order of magnitude the diffusivity I+. It was assumed that 
heterogeneous rate constants for both cations are equal, k = ki,fL = ki,bL = ki,fR = ki,bR. Charged 
ionic site, R−, is restricted only to the membrane phase. The influence of heterogeneous rate 
constants and membrane thickness on impedance spectra is showed below. 
Fig. 5 presents the impedance spectra calculated for bi-ionic case, according to the conditions 
given in Table 3.  
 

Table 2.  Initial concentrations, diffusivities and heterogeneous rate constants for multi-ionic case 

 
ciL 

[M] 
ciM 
[M] 

ciR 
[M] 

Di 
[m2s−1] 

ki,fL 
[ms−1] 

ki,bL 
[ms−1] 

ki,bR 
[ms−1] 

ki,fR 
[ms−1] 

J2+ 10−10÷1 5 × 10−4 1 10−11 10−3 10−3 10−3 10−3 
I+ 0.15 0 0 10−11 4.472 × 10−7 10−3 10−3 4.472 × 10−7

R− 0 10−3 0 10−11 0 0 0 0 
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Table 3.  Initial concentrations, diffusivities and heterogeneous rate 
constants for bi-ionic case. k = ki,fL = ki,bL = ki,fR = ki,bR  
 

 

 
ciL 

[M] 
ciM 
[M] 

ciR 
[M] 

Di 
[m2s−1] 

k 
[ms−1] 

J+ 10-3 10−3 0 10−10 10-6÷10−4 
I+ 0 0 10−3 10−11 10-6÷10−4 
R- 0 10−3 0 10−11 0 

 

 

 
 

Fig.  5. Simulated complex impedances for different heterogeneous rate constants. Radial frequency range: 
ω = 10−4 … 108 Hz, I0 = 10−4 Am−2. 
 
 
The impedance diagram shows that in the case of low values of the heterogeneous rate con-
stants a slow interfacial transport invokes additional arc in an intermediate frequency range. 
This additional arc is attributed to the interface impedance [10]. 

Fig. 6 and Fig. 7 present impedance arcs simulated for different values of membrane thick-
ness. The heterogeneous rate constants equal: k = ki,fL = ki,fR = ki,bL = ki,bR = 10−4 [ms−1] for 
all cations. One can see that in thick membranes only two arcs arte present, the high-
frequency bulk arc and the low-frequency Warburg arc, Fig. 6. When the thickness of the 
membrane decreases, arcs become smaller (impedance of the system decreases). For values of 
membrane thickness in the range 250 nm < d < 5 µm an additional, middle frequency range 
arc appears. When d ≤ 250 nm again, only two arcs are present, the high-frequency arc, con-
nected with properties of bulk of the membrane and the middle- and low-frequency arc, which 
is related to interfacial properties of the membrane, Fig. 7. This behaviour is in good agree-
ment with Ohm’s law.   
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Fig. 6. Simulated impedance spectra for different values of membrane thickness. Radial frequency range: ω = 
10−4 … 108 Hz, I0 = 10−4 Am−2. 
 
 
 
 

      
 

Fig. 7. Simulated impedance spectra for different values of membrane thickness. Bi-ionic case. Radial fre-
quency range: ω = 10−4 … 108 Hz, I0 = 10−4 Am−2. 
 

4 Conclusions 
The numerical solution of the system of coupled Nernst-Planck-Poisson equations is pre-
sented. The method directly relates the diffusivities in the membrane and the interface proper-
ties (heterogeneous rate constants of transport across interfaces) to the characteristic features 
of impedance spectra (dimensions and characteristic radial frequencies). Consequently, the 
equivalent circuit is not necessary to interpret the impedance spectra of electrochemical sys-
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tems. Instead it can be useful in inverse problems. It was found that qualitatively similar ef-
fects on impedance spectra are a result of different physico-chemical parameters. 
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Appendix: Symbol legend 
 

ic         concentration of i-th ion 
L R,i ic c  concentrations of i-th ion in left and 

right bathing solution 
0 d,i ic c  concentrations of i-th ion in the mem-

brane at 0x =  and x d=  
E  electric field 

iJ  flux of i-th ion 
,fLik , ,bLik , ,fRik , ,bRik   

heterogeneous rate constants at inter-
faces, where subscripts i, f (or b) and L 
(or R) denote the component, direction 
of ion permeation (toward or from the 
membrane) and left (or right) side of 
the membrane, respectively. 

iD  self diffusion coefficient 
iz  valence of i-th ion 

ρ  electric charge density 
V  membrane potential 

*Z  complex impedance 
'Z  real part of  impedance 
"Z  imaginary part of  impedance 
'V  real part of complex potential 
"V  imaginary part of complex potential 

V∞  potential at t = ∞  
F  Faraday constant 
R  gas constant 
T  temperature 
ε  dielectric permittivity 

0I  amplitude of the current signal 
j  1−  
ω  radial frequency 
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