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Abstract 
Size dependence of solute diffusivity has been investigated using molecular dynamics 

simulations for a range of solute radii in a binary mixture consisting of solute and solvent 
species. We demonstrate that the Stokes-Einstein relationship between self diffusivity 
and solute radius breaks down over a range of solute-solvent size ratios. This is a result of 
the previously known Levitation Effect. Three distinct regimes can be seen depending on 
the solute-solvent size ratio. Several properties have been computed to understand the 
nature of solute motion in the three regimes.  

 
1. Introduction 

Diffusion of solute in solution has been of interest for over a hundred years. Early 
studies by Brown and Einstein provided the required insight into the nature of diffusion 
of the solute within solution [1-2]. Einstein proposed the Theory of Brownian Motion 
based on kinetic theory and derived the following expression for self diffusivity [2-5]: 
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=                                                     (1) 

 
where NA is the Avogadro number, T is the temperature and η is the viscosity of the 
solution, ru is the solute radius. Einstein assumed that the solute radius is larger than the 
solvent radius. The above expression has also been derived by Sutherland at about the 
same time as Einstein putting forth similar arguments [6]. More recently, Chandrasekar 
also derived the above expression by the application of Langevin equation to Brownian 
motion [7]. 

Over the past hundred years, extensive work by many different groups has attempted 
to understand more deeply the nature of diffusion in liquids. Number of experimental as 
well as theoretical work has been reported that attempts to understand many aspects of 
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solute diffusion in solutions. A number of investigations have explored the validity of 
Stokes-Einstein expression, Eq. (1). A number of factors have been varied: among these 
is the viscosity, mass, density, size of the solute, nature of the interaction (hard sphere, 
soft sphere, Lennard-Jones, square well and others).   

The validity of the reciprocal relation between D and η has been investigated 
extensively. van Gunsteren and coworkers found from molecular dynamics (MD) 
simulations, that the product of viscosity with diffusion coefficient of pure water is a 
function of the mass of water [8]. This suggests a deviation from Stokes-Einstein 
expression, Eq. 1 which predicts that the product is independent of mass. Alder et al. 
found that the inverse relationship between self diffusivity and viscosity is valid over a 
wide density range they studied for a hard sphere fluid [9]. 

In a detailed study, Kivelson investigated the validity of Stokes-Einstein relationship 
for solutes of lower mass and size [10]. Their study, however, restricts itself to solute 
mass (mu) greater than or equal to solvent mass (mv), mu ≥ mv and similarly the radius 
ru ≥ rv. They find that SE relationship is valid under these conditions in agreement with 
experiments [11-14].  

Alder et al. studied the binary mixture of hard sphere fluids at high densities [15]. 
They varied mass and size of the solute. They found deviations from Enskog theory for 
smaller solute sizes but found the results in agreement with experiment. Alder and Alley 
investigated a one-component fluid of hard disks by molecular dynamics [16]. Long-time 
correlations in the displacement distributions were found in these systems. Bernert and 
Kivelson found that the reciprocal relationship given by Stokes-Einstein expression (1) 
between D and η is valid over five orders of magnitude of variation of η [17]. Willeke 
reported MD simulation of binary Lennard-Jones mixtures and studied the validity of 
Stokes-Einstein relationship over a wide range of mass and size ratios of solute to solvent 
[18]. They found that the Stokes-Einstein relation is not valid for σuu/σvv  < 1 and 1/16 < 
mu/mv < 50 among other things.  

Lamanna et al. have studied protein solutions and examined the validity of the 
reciprocal relationship between D and η given by Stokes-Einstein relation as a function 
of concentration of the solution [19]. Yamamoto and Onuki showed that the diffusivity is 
heterogeneous on time scales less than the stress relaxation time of a tagged particle [20]. 
Masters and Keyes investigated solute motion as a function of the size and mass ratio; an 
increase in the self diffusivity over and above the Stokes-Einstein value for light solutes 
when the solute size was about 1/4 of the solvent size was seen by them [21]. 

There have also been several studies attempting to understand the D-η relationship in 
supercooled liquids. Bagchi has shown that near the glass transition temperature the self 
diffusivity exhibits a change from the viscosity dependent, Stokes-Einstein to an 
activated, hopping motion [22]. The latter is nearly independent of viscosity. 
Subsequently, Tarjus and Kivelson showed that there is a decoupling of the translational 
motion from viscosity below the supercooled transition in a one-component system [23]. 
Bhattacharya and Bagchi have reported a similar study for a two component system in the 
supercooled regime [24]. In another study, Bhattacharyya and Bagchi have carried out 
mode coupling theory calculations of solute-solvent mixtures and found that small solutes 
have self diffusivities higher than that given by the Stokes-Einstein relationship [24]. 
They have also carried out studies with a range of solute sizes by choosing solute smaller 
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as well as larger than the solvent size. Further, they studied dependence of diffusivity as a 
function of solute-solvent size ratio. Jung et al. investigated through MD simulation the 
decoupling and breakdown of Stokes-Einstein relation in supercooled liquids [25]. 
Srinivas et al. in a study based on computer simulation and mode coupling theory of the 
solute-solvent system, showed that varying the solute-solvent interaction from attractive 
to repulsive can change the diffusion coefficient of the solute nonlinearly [26]. 
Breakdown of the Stokes-Einstein relation for translational diffusion in supercooled 
liquids was studied by Viot, Tarjus and Kivelson at low temperatures [27]. In a density 
functional theoretical treatment of a tagged particle in a viscous liquid, Bagchi   
examined the validity of the inverse relationship between the orientational correlation 
time and the self-diffusivity of a tagged particle [28]. 

Experiments have also attempted to investigate the Stokes-Einstein relationship. 
Phillies et al. reported deviations from Stokes-Einstein dependence of self-diffusivity on 
viscosity in a light scattering study of hydroxypropylcellulose:water mixture [29]. Nigra 
and Evans have obtained the Stokes-Einstein relationship between the viscosity and the 
self diffusivity for a fluid interacting via modified square well potential [30]. 

Kaddour and Barrat and also Easteal and Woolf have carried out computer simulation 
investigations of solute-solvent mixtures to understand the variation of diffusion 
coefficient of the solute with size [31-32]. More recently, Noworyta et al. observed that 
small solutes in water also showed higher diffusivities than given by Stokes-Einstein 
expression [33]. Recently Sharma and Yashonath reported molecular dynamics studies of 
diffusion of solute particles in solvent [34]. These studies suggested existence of three 
regimes; in one of the regimes, it is seen that the solute exhibit diffusion coefficient that 
is higher than predicted by the Stokes-Einstein expression.  

Here we report a systematic investigation of dependence of D on size of the solute in 
a binary mixture interacting via Lennard-Jones potential. The solute radius is varied over 
a reasonably wide range but is kept smaller than the solvent radius. We investigate in 
detail the nature of motion of the solute in the three regimes to bring out the differences 
between them.     

 
2. Methods 
 
2a. Intermolecular interactions 
 
A binary mixture consisting of spherical solute and solvent atoms interacting via Lennard 
-Jones interaction potential (6-12) is studied.  The total interaction energy has 
contributions from solute-solute (uu), solute-solvent (uv) and solvent-solvent (vv) terms: 
 
                               12 6
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r r
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σ σ
φ ε

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

                  α, β = u, v  (2)    

                                                                    
Simulations have been carried out with full Lennard-Jones (LJ) interaction potential 
between all the species (solute-solute, solute-solvent and solvent-solvent) and these are 
referred to as DISP. Further, simulations with the coefficient of the 1/r6 term in the 
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Lennard-Jones potential in equation (1) given above has been assumed as zero and in 
these simulations are referred to as SOFT. That is, the dispersion interaction is absent and 
only a soft repulsive interaction exists. The interaction for both solute-solute and solute-
solvent interactions consist of only 1/r12 term; solvent-solvent interactions are always of 
full LJ (6-12) form in both DISP and SOFT.  
 
Interaction between the solute and the solvent species are related through 0.7uv uuσ σ= +  
and the choice of ε are listed in Table 1 [35-36]. 
 
2b. Molecular Dynamics Simulations 
 
All simulations have been carried out in the microcanonical ensemble with periodic 
boundary condition using DLPOLY package [37]. After equilibration, positions and its 
derivatives are stored for subsequent analysis. The atoms are integrated using Verlet 
Leapfrog algorithm.    
 
2c. Computational Details 
 
The system consists of 50 solute and 500 solvent atoms. The length of the simulation cell 
is 33.3Å for a reduced density (ρ*) of 0.933 which is higher than the triple point reduced 
density, 0.7. The reduced temperature (T*) of the system is 1.663 (50K). The solute mass 
(200amu) is heavier as compared to the solvent mass (80amu).  The time step for 
integrating the Newton’s equations of motion is 5fs and the system is equilibrated for 
2ns. The relative standard deviation in total energy is better than 5 x 10-5. The position 
coordinates and their derivatives are stored at an interval of 100fs for a run length of 
700ps to compute different autocorrelation functions. Further, a production run of 6ns 
with a storage interval of 1ps to store the position coordinates has been made to calculate 
the mean square displacement.    
  
 Table 1 Interaction Parameters 
 
                         

Type of interaction σ, Å ε, kJ/mol 
vv 4.1 0.25 
uv 1.0 – 4.7 1.5 
uu 0.3 – 4.0 0.99 
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3. Results and Discussions  
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Figure 1 Time Evaluation of mean square displacement with 
(DISP) nd without (SOFT) dispersion interaction 

 
The mean square displacements of solute atoms as a function of time is evaluated for 
systems with and without dispersion interaction (see Figure 1). The time evolution of the 
mean squared displacement over 1ns shows that the statistics are adequate; there are no 
deviations from the straight line behaviour suggesting that all solute are exhibiting 
diffusive behaviour. The data can be fitted well to straight line. The dependence of the 
slope of the mean square displacement on the size of the solute is different in simulations 
with dispersion and without dispersion interaction as we will see.  
     We define the solute-solvent size ratio; κ = σuu/σvv.  Figure 2 shows the variation of 
diffusivity of the solute with κ−1. D is seen to exhibit a monotonic increase with κ−1 for 
the simulations without dispersion interaction (SOFT). For simulations with full LJ 
potential, we see that the in the limit of small κ−1, the increase in κ−1 leads to an increase 
in D. This is the behaviour expected from the SE equation (1). This is seen for κ−1 < 2.56. 
This is the regime I where SE is perfectly valid. In the range  2.56 < κ−1 < 5.88, we see 
that the self diffusivity D is higher than the value predicted by Stokes-Einstein 
relationship, .i.e. the D values are higher than the Stokes-Einstein value obtained from 
Eq. (1). This is what we call as regime II.  This deviation has not been noted previously, 
although several groups (as discussed in the introduction) have reported enhanced 
diffusivities when the solute diameter is approximately 1/4 to 1/3 of the solvent diameter. 
For example, Masters and Keyes who studied light solutes found that for solute sizes 
about 0.25 times the solvent size, self diffusion is higher than the SE value [21]. 
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Similarly, Ould-Kaddour and Barrat as well as Easteal and Woolf also reported such 
enhanced diffusivity [31-32]. More recently, Noworyta have reported higher D for Li0 in 
water [33]. Bhattacharya and Bagchi have reported mode-coupling calculations in which 
they found self diffusivity values higher than the Stokes-Einstein value for small solutes 
in solvent [24]. Thus, present simulations results are consistent with previous studies 
reporting higher D for smaller solutes. 
       We note that the self diffusivity increases with increase in κ−1 and is higher than the 
SE value above κ−1 = 2.56. This deviation from the reciprocal relationship given by 
Stokes-Einstein expression reaches a maximum at around κ−1 = 4.55. As κ−1 increases 
further above 4.55, it is seen that the deviation from SE value decreases. By 
κ−1 = 5.88, the enhancement in the value of D ceases to exist. Thus, it is only over a small 
region of 2.56< κ−1 < 5.88 where the deviation leading to enhancement is seen. This 
behaviour has been previously seen in widely differing systems. Guests in zeolites exhibit 
a maximum in self diffusivity when the size of the guest is comparable to the neck 
diameter. Zeolites have pores through which the guests can diffuse; the pores at some 
points are narrower and these are referred to as neck or bottleneck [38-39]. Recently 
similar size dependent diffusivity maximum has been seen in binary liquid mixtures [40]. 
The maximum occurs due to the mutual cancellation of forces exerted on the diffusant 
(guest or solute) by the surrounding media and is known as Levitation effect.   
    We further note that this regime II does not exist in SOFT simulations where the 
dispersion term is absent. Thus, the presence of the attractive dispersion term is 
responsible for the deviation in D from the Stokes-Einstein value between 5.88< 
κ−1 < 2.56 . In the absence of the 1/r6 term, which is long-ranged, the absence of the 
retarding effect of this attractive potential leads to higher diffusivity values. Thus, we see 
that the D values are higher for SOFT simulations as compared to DISP simulations 
almost over the entire range of κ. However, the enhancement in D arises from the 
presence of mutual cancellation of forces that occurs because of symmetry and has 
relevance only in the presence of the dispersion term. When κ−1 = 4.55, the solute 
behaves as though is not confined to the pores of the medium in which it exists although 
it is still diffusing within the medium. In the absence of the dispersion interaction, the 
potential is short-ranged and there is no attractive term and therefore such a cancellation 
does not significantly reduce the forces (for κ−1 = 4.55 in comparison to other 
sizes) exerted on the solute by the solvent. For more detailed discussion please see other 
references. 
        For κ−1 greater than 5.88, we see that the solute diffusivity increases more rapidly 
with increase in κ−1. The dependence of D is 1/σ2

uu. This is expected from kinetic theory 
whenever the diffusant is significantly smaller than the voids through which it is 
diffusing.  This fit is also shown in Figure 2. This is regime III. 
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 Figure 2 Self diffusivity D is plotted against the solute-solvent size 
ratio κ for (a) with dispersion interaction (DISP) and (b) without 
dispersion interaction (SOFT). Continuous lines shown are only a 
guide to the eye. Also shown are fits 1/κ in the limit of large κ and 
1/κ2 in the limit of small κ to MD data of DISP simulations in the 

 
 
 
 
 
 
Figure 3 shows the mean square force averaged over all times and solutes. This is the 
force exerted on the solute by the surrounding solvent atoms. We see that the force on the 
solute decreases with decrease in solute radius or κ upto κ = 0.22. As κ decreases below 
this value, the average mean square force actually increases. Thus, the average force is 
lowest for κ = 0.22. Thus, both a larger solute as well as a smaller solute will encounter a 
higher force. This peculiarity arises from the existence of Levitation Effect. According to 
this, when the size of the solute is similar to the size of the neck or void in which it exists, 
then there is mutual cancellation of force leading to a lower net force on the solute. Thus, 
the diffusivity is higher for κ = 0.22 in comparison to any solute larger than this size. For 
sizes smaller than this size, other factors play a role which is discussed below. The plot of 
the average force shown in Figure 3 clearly demonstrates that the mutual cancellation of 
forces indeed is the reason for higher diffusivity. 
 
     We have also calculated the activation energy of different solutes in the three regimes 
from the Arrhenius relationship: 
     

0 exp actED D
RT

−⎛= ⎜
⎝ ⎠

⎞
⎟
    (3) 
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Figure 3 Average mean square force is shown for different solute-
solvent size ratios (κ),  in the presence (DISP) and absence of 
(SOFT) dispersion interaction. 

 
 
 
 
The self diffusivity of solutes at four different temperatures obtained from MD 
simulations show the expected Arrhenius behaviour. Figure 4 shows the Arrhenius plot 
for the solutes with and without dispersion interaction.  Figure 5 shows the variation of 
the activation energy, Eact and pre-exponential factor Do with κ, calculated from the slope 
and intercept respectively of the Arrhenius plot.  Results are shown for the solutes in the 
three different regimes in the presence and the absence of dispersion interaction.  
 
 The results show interesting variation of Eact and Do for the three regimes. We 
confirm that although we have shown results for only one or two solute sizes in each 
regime, other solute sizes in a given regime exhibit values similar to the solutes shown 
here. Therefore, the trend seen here is the correct trend. In regime III, Eact is large as 
compared to regime II but less than what is obtained for regime I. Thus we see the trend 
Eact(II) < Eact(III) < Eact(I). The pre-exponential factor Do for regime III is large and for 
regime II it is somewhat less. For regime I, Do is smallest among the three regimes. 
Within regime I, we see that Do increases slightly with increase in size of the solute as 
expected.  Thus, we see the trend Do(I) < Do(II) < Do(III).  Thus, for regime II, while 
activation energy is lowest and the pre-exponential factor is intermediate in value as 
compared to the other two regimes. Since, the predominant influence on self diffusivity is 
that of the activation energy, we see that the overall diffusivity of solutes for regime II is 
maximum and those of regime I and regime III is lower than that of solutes in regime II. 
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In Figure 6 we show velocity autocorrelation 
function (vacf) for several κ. We note that 
for regime I and II, the vacf exhibit little or 
no backscattering. For regime III, the 
intercept of the curve with x-axis occurs at 
large time leading to large diffusivity. 
However, note that in spite of the large 
diffusivity for regime III, the activation 
energy barrier is higher for regime III as 
compared to regime II. This is mainly 
because of the significant increase in the 
pre-exponential factor, Do. The curve for κ = 
0.22 from regime II is seen to exhibit 
smooth decay in comparison to a solute 
from either regime I or III. A solute from 
regime I (large κ) exhibits large 
backscattering and has low diffusivity. In 
absence of dispersion interaction, solute has 
higher diffusivity than with dispersion 
interaction as seen for κ = 0.22 and 0.49. 

Figure 6 Velocity autocorrelation plot 
for solutes in the three regimes, with   
and without dispersion interaction. 

Figure 5 Activation Energy and D0 vs. κ 
plot for solutes in the three regimes, with 
and without dispersion interaction 
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The intermediate scattering function Fs(k,t) has been obtained from MD trajectory from 
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 Figure 7 Intermediate scattering functions for solutes at small k. 
Left figure shows the decay over the whole duration while the right 
figure shows, on an expanded scale, the decay during the first few 
picoseconds. Results are shown for the system with dispersion 
interaction. 
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 Figure 8 Intermediate scattering functions for solutes at small k. 

Left figure shows the decay over the whole duration while the right 
figure shows, on an expanded scale, the decay during the first few 
picoseconds. Results are shown for the system without dispersion 
interaction. 

 
 
 
 
 

 
Figure 7 shows the intermediate scattering function as a function of time for solutes in the 
three regimes in the presence and in the absence of dispersion interaction. For solutes in 
regime I and III, double exponential gives a better fit as compared to single exponential 
fit for both with and without dispersion interaction. The single exponential fit to Fs(k,t) 
for κ = 0.12 is not good near 15 and 50 ps (other than initial times (< 2ps) where even bi-
exponential fit provides poor agreement with Fs(k,t)). At times less than 2ps, the decay is 
mainly in the ballistic regime and therefore not of relevance to diffusive behaviour which 
we are discussing here. The better agreement of bi-exponential fit  

 
   1/

1 2( ) tf t a e a e 2/tτ τ− −= +     (5) 
 

to MD derived Fs(k,t) suggests that the solute perceives the liquid or solution as 
consisting of two distinct regimes. In contrast to this, for the slightly larger solute (κ = 
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0.22), the Fs(k,t) from MD fit well to a single-exponential fit (except for the ballistic 
regime). We see that for still larger size of the solute (e.g., κ = 0.49), the single 
exponential still provides a good fit to Fs(k,t).  
     Figure 8 shows the Fs(k,t) for a few solute sizes for the case without the dispersion 
interaction. The results suggest that for κ = 0.22, the single exponential does not provide 
a good fit at all. In the case of the larger solute (κ = 0.49), although the bi-exponential 
provides a better fit, the single exponential also seems to fit reasonably well.  
      In order to understand these results, we have computed the k-dependence of width of 
the self part of the dynamic structure factor, Δω/2Dk2. Figure 9 shows the behaviour of 
Δω/2Dk2 for four different sizes of the solute. For κ = 0.12, this function exhibits a 
minimum at some intermediate value of k. For the larger sized solute κ = 0.22, such a 
behaviour is not seen; a smooth decrease with k is seen. For still larger sizes, κ = 0.49 and 
0.73, pronounced minimum exist at some intermediate values of k. 
     Let us now see what is known about this quantity. This quantity has been previously 
computed from MD simulations by several groups. Levesque and Verlet [41] computed 
this quantity for argon fluid at low density and high temperature (ρ*= 0.65 and T* = 
1.872). They found that Δω/2Dk2 exhibits only a monotonic decrease with increase in k. 
Nijboer and Rahman [42] studied a high density argon fluid at low temperature and found 
that ((ρ*= 0.8442 and T* = 0.722). They found that Δω/2Dk2 exhibits a pronounced 
minimum at an intermediate value of k. This value of k corresponds to the near neighbour 
shells.  No understanding of why the two different behaviours of this quantity are seen for 
two different densities and two different temperatures is available in the literature. 
     We now provide a qualitative explanation for the observed behaviour of Fs(k,t) as well 
as Δω/2Dk2 as a function of the size of the diffusant. We have seen previously that the 
when the solute is small (κ = 0.12), the activation energy is large. Let us try to understand 
from where this activation energy arises. The radial distribution function provides the 
structure of a liquid; from the radial distribution function, it is evident that the maximum 
density occurs at or near the first solvent shell. A solute that diffuses through the liquid 
has to pass through this shell. It need not pass through it only in the case when it moves 
carrying with it such a solvent shell. This latter possibility is ruled out since this will 
mean movement of the whole shell which is likely to be only slower and since the solute-
solvent interaction is not too strong, this is unlikely. For the solute to escape the first 
solvent shell then would provide the most difficult step in the passage of a solute. We 
note that the first solvent shell is a sphere. For the solute to get past the solvent shell there 
has to be an opening on the surface of the first solvent shell that is large enough for the 
solute to pass through.  
     At this point it is relevant to recollect the past findings with regard to what is now 
known as Levitation Effect. A guest inside a zeolite cage (can be approximately 
considered to be spherical in shape) goes out of the cage through a narrow window 
located on the sphere. Such a passage through the window or neck is found to be 
associated with a higher energy barrier if the guest is significantly smaller than the 
window diameter. If the guest is similar to the window size, then it encounters little or no 
energetic barrier and it goes past the cage without difficulty.  
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     We use this knowledge here in the present context of solute motion. We suggest that 
the smaller solute (κ = 0.12) is smaller than the average opening that is seen on the 
surface of the first solvent shell. As a result, it encounters larger activation energy. This is 
what we saw earlier. The larger solute (κ = 0.22), is of a size that is comparable to the 
opening in the first solvent shell and therefore has a lower activation energy (as suggested 
by the Levitation Effect). Thus, the results we obtain for solute-solvent systems with 
dispersion interaction are understandable. The bi-exponential decay of the intermediate 
scattering function arises from the fact the smaller solute has a larger barrier to get past 
the first solvent shell; motion within this shell is facile but past the shell is difficult. The 
region within the shell is therefore seen to be different the region outside the shell. 
Motion within the shell is associated with a fast decay while motion outside of this shell 
is associated with slow decay. 
     For systems without dispersion interaction, the absence of the attractive term leads to 
lowered activation energies (in comparison with systems with dispersion interaction) 
irrespective of the size of the solute. The absence of the long-range interaction in the 
presence of only the soft repulsive terms means that the mutual cancellation of forces 
does not occur. Therefore the unexpected dependence on the solute size does not exist 
and only a monotonic dependence is seen as we saw in Figure 2.  
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Figure 9  Wavevector dependence of solutes in the three regimes, 
with and without solute-solvent dispersion interaction.  
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4. Conclusion 
We have shown that the reciprocal dependence suggested by the Stokes-Einstein 

expression breaks down over a narrow range of solute-solvent size ratio, κ. We have 
discussed the range over which this deviation occurs and the reasons for the same. 
Further, we demonstrate that the solutes in this range called the Levitating regime is 
associated with different (a lower) activation energies, different behaviour of Fs(k,t) and 
also Δω/2Dk2. We also propose a microscopic picture that is consistent with all these 
properties. This picture or scenario needs to be verified by direct calculation of the 
additional quantities or properties.  
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