# Calculation of parameters of Heine and Abarenkov model potential for bcc crystals

A. Ghorai School of Science Block 1/3G 66/63 Jangalpur Road, Kolkata – 700 081, India e-mail : amitavaghorai@rediffmail.com

### Abstract

Parameters of Heine and Abarenkov model potential (HAP) have been computed in this paper for sixteen body centered cubic (bcc) closed pack crystals. From the minimization of structure dependent energy of the pure crystal the inter-relation between the two parameters is first determined. Calculation uses pseudopotential technique with nine different exchange and correlation functions (ECF) and either only available experimental value of vacancy formation energy (VFE) or that obtained from an empirical relation based on other experimental parameters (Melting temperature, cohesive energy or activation energy) as tool. The variation of VFE with one parameter of HAP and different ECF show sharp fall in VFE near very small value of it after which it shows constancy for all bcc crystals. Comparison is made with parameter of Ashcroft model also. For increase in valency this parameter of HAP increases and show distinct different curves.

## **KEYWORDS**

Point defect, vacancy, Heine and Abarenkov model pseudopotential, bcc crystal, exchange and correlation function.

#### PACS NUMBERS

61.72, 66.30, 02.70, 65.40, 71.15

#### **1. Introduction**

Here I shall use a simplified way of pseudopotential approach which is comparatively easier to get some insight into some bcc crystals. This is for recent studies of the mechanism of melting [1-2] by considering the role of surfaces with regard to the concentration and migration of vacancies, provides valuable input for this type of work. Necessity of this work is due to the fact that a database for fcc and hcp crystals was demonstrated using ab initio calculations by Angsten et. al. [3] and seven interatomic potentials were discussed by Li et. al. [4].

The two parameters  $(A, r_c)_{HA}$  of simple Heine and Abarenkov model pseudopotential (henceforth called HAP) is used for this purpose. The Fourier transform of it is given by [5]

$$\omega(q) = \frac{4\pi A}{\Omega q^3} (qr_c cosqr_c - sinqr_c) - \frac{4\pi z e^2}{\Omega q^2} cosqr_c$$
(1)

Here z is the valency,  $\Omega$  the atomic volume, e the electronic charge, and q the wave number. Earlier these two values calculated using fittings to several experimental values of atomic properties, viz. phonon dispersion curves, resistivity, elastic constants, lattice parameter, etc. But here only the experimental value of vacancy formation energy (VFE) will be used for the calculation.

### 2. Results and discussions

The expression for VFE uses pseudopotential method [6-7] and computation uses integration and summation. The integration over quasi-continuous wave numbers  $\vec{q}$  uses Gauss-



Legendre quadrature method within the limit from 0 to 1 in 100 divisions and Gauss-Laguerre quadrature integration in the limit from 1 to infinity [8].

 $\int_0^{\infty} \rightarrow \int_0^1 \text{Gauss} - \text{Lagendre} + \int_1^{\infty} \text{Gauss} - \text{Laguerre} \qquad -(2)$ The discrete sum over lattice wave numbers defined as  $\vec{q}_0 = \frac{m_1}{N_1} q_1 + \frac{m_2}{N_2} \vec{q}_2 + \frac{m_3}{N_3} \vec{q}_3$  where the maximum value of  $\frac{m_i}{N_i} = 14$  with i=1,2,3 and the lattice wave numbers are generated in the cubic Brillouin zone with the reciprocal lattice vectors respectively as  $\vec{q}_1 = \frac{2\pi}{a}(\hat{j} + \hat{k}), \ \vec{q}_2 = \frac{2\pi}{a}(\hat{k} + \hat{i})$  and  $\vec{q}_3 = \frac{2\pi}{a}(\hat{i} + \hat{j}), \ (\hat{i}, \hat{j}, \hat{k})$  being unit vectors along three coordinates. The input parameters used in this calculation are lattice constant a and experimental or theoretical mean value of VFE. The necessity of (VFE)<sub>theo</sub> is due to the fact that in most of the cases the experimental value of VFE is not available and so (VFE)<sub>theo</sub> is determined from an empirical relation among the melting temperature  $(T_m)$ , the cohesive energy  $(E_{coh})$  and the activation energy for self diffusion  $(Q_0)$ .



Figure 1 :  $E_F^{1\nu} - A$  plot for Lithium (Li) and Sodium (Na) type bcc metals



Figure 2 :  $E_F^{1\nu} - A$  plot for Potassium (K) and Rubidium (Rb) type bcc metals



Figure 3 :  $E_F^{1\nu} - A$  plot for Cesium (Cs) and Barium (Ba) type bcc metals



Figure 4 :  $E_F^{1\nu} - A$  plot for Iron (Fe) and Chromium (Cr) type bcc metals



Figure 5 :  $E_F^{1\nu} - A$  plot for Molybdenum (Mo) and Tungsten (W) type bcc metals



Figure 6 :  $E_F^{1\nu} - A$  plot for Vanadium (V) and Niobium (Nb) type bcc metals



Figure 7 :  $E_F^{1\nu} - A$  plot for Tantalum (Ta) and Thallium (Tl) type bcc metals



Figure 8 :  $E_F^{1\nu} - A$  plot for Europium (Eu) and Zirconium (Zr) type bcc metals

|   | Fable | e 1   |             |       |         |                 |        |         |         |             |     |
|---|-------|-------|-------------|-------|---------|-----------------|--------|---------|---------|-------------|-----|
| I | nput  | paran | neters [1 F | Rydbe | rg = 13 | .605 eV] and [1 | Atomic | Unit (A | AU) = 0 | .0529177 nm | ]   |
| ľ |       |       |             |       | Lattico |                 |        |         |         |             | AVE |

| Atomic<br>number | Configuratior                                                                                                               | Valency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lattice<br>Constant<br>(nm) <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vasisth<br>parame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a-Singwi<br>ters in au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T <sub>m</sub><br>(K) <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E <sub>coh</sub><br>(eV) <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} Q_0 \\ (eV)^b \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (VFE) <sub>exp</sub><br>(eV)                                                    | (VFE) <sub>theo</sub><br>theoretical<br>range in (eV)   |
|------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------|
| 3                | He2s <sup>1</sup>                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.3491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.29979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 453.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.55<br>0.585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.34^{c}  0.4^{c}  0.48^{c}$                                                   | 0.302-0.489                                             |
| 11               | Ne3s <sup>1</sup>                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.07771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.499<br>0.438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.36^{c}  0.39^{c}  0.42^{c} \\ 0.35^{d} \end{array}$         | 0.24-0.334                                              |
| 19               | Ar4s <sup>1</sup>                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.16737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.26925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 336.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.418<br>0.409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.39^{c}  0.3^{c}  0.31^{d}$                                                   | 0.23-0.28                                               |
| 37               | Kr5s <sup>1</sup>                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.19566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.26981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 312.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.408 \\ 0.409$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.27 <sup>c,d</sup>                                                             | 0.224-0.261                                             |
| 55               | Xe6s <sup>1</sup>                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.6045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.23419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 301.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.28^{c}  0.26^{d}$                                                            | 0.241-2.199                                             |
| 56               | Xe6s <sup>2</sup>                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.14962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.27321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 | 0.57-0.835                                              |
| 26               | Ar3d <sup>6</sup> 4s <sup>2</sup>                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.93847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.31221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.658<br>2.488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.6 <sup>e</sup>                                                                | 1.284-1.509                                             |
| 24               | Ar3d <sup>4</sup> 4s <sup>2</sup>                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.93937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.31294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.196<br>4.572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $2.0^{\rm f} 2.27^{\rm f} 2.08^{\rm f}$                                         | 1.23-2.51                                               |
| 42               | Kr4d <sup>5</sup> 5s <sup>1</sup>                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.97098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.30512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.998<br>3.997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $2.24^d \ 3.0^f \ 3.2^f$                                                        | 2.046-2.413                                             |
| 74               | Xe4f <sup>14</sup> 5d <sup>2</sup> 6s <sup>2</sup>                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.30548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 3.15^{d} \ 4.0^{f} \\ 4.1^{f} \ 3.6 \ -4.0^{f} \end{array}$   | 2.670-3.34                                              |
| 23               | Ar3d <sup>3</sup> 4s <sup>2</sup>                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.95586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.30939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.58<br>4.083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2.2^{\mathrm{f}}$                                                              | 1.593-2.519                                             |
| 41               | Kr4d <sup>4</sup> 5s <sup>1</sup>                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.98576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.30406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.163<br>4.164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $2.04^{\rm d} \ 2.6^{\rm f} \\ 2.7-3.0^{\rm f}$                                 | 2.271-2.292                                             |
| 73               | Xe4f <sup>14</sup> 5d <sup>2</sup> 6s <sup>2</sup>                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.98576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.30406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.28<br>4.281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 2.9^{\rm d}2.8^{\rm f} \\ 2.9^{\rm f}3.1^{\rm f} \end{array}$ | 2.354-2.744                                             |
| 81               | Xe4f <sup>14</sup> 5d <sup>2</sup> 6s <sup>2</sup>                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.04372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.29327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 | 0.48-3.651                                              |
| 63               | Xe4f <sup>7</sup> 5d <sup>0</sup> 6s <sup>2</sup>                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.11056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.28079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 | 0.558-0.909                                             |
| 40               | Kr4d <sup>2</sup> 5s <sup>2</sup>                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.01502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.29717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.85<br>0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.75 <sup>d</sup>                                                               | 0.468-1.875                                             |
|                  | Atomic<br>number<br>3<br>11<br>19<br>37<br>55<br>56<br>26<br>24<br>42<br>74<br>42<br>74<br>23<br>41<br>73<br>81<br>63<br>40 | Atomic<br>number         Configuration           3         He2s <sup>1</sup> 11         Ne3s <sup>1</sup> 19         Ar4s <sup>1</sup> 37         Kr5s <sup>1</sup> 55         Xe6s <sup>1</sup> 56         Xe6s <sup>2</sup> 26         Ar3d <sup>6</sup> 4s <sup>2</sup> 42         Kr4d <sup>5</sup> 5s <sup>1</sup> 74         Xe4f <sup>14</sup> 5d <sup>2</sup> 6s <sup>2</sup> 23         Ar3d <sup>3</sup> 4s <sup>2</sup> 41         Kr4d <sup>4</sup> 5s <sup>1</sup> 73         Xe4f <sup>14</sup> 5d <sup>2</sup> 6s <sup>2</sup> 81         Xe4f <sup>14</sup> 5d <sup>2</sup> 6s <sup>2</sup> 40         Kr4d <sup>2</sup> 5s <sup>2</sup> | Atomic number       Configuration/Valency         3       He2s <sup>1</sup> 1         11       Ne3s <sup>1</sup> 1         19       Ar4s <sup>1</sup> 1         37       Kr5s <sup>1</sup> 1         55       Xe6s <sup>1</sup> 1         56       Xe6s <sup>2</sup> 2         26       Ar3d <sup>6</sup> 4s <sup>2</sup> 2         24       Ar3d <sup>4</sup> 4s <sup>2</sup> 2         42       Kr4d <sup>5</sup> 5s <sup>1</sup> 2         74       Xe4f <sup>14</sup> 5d <sup>2</sup> 6s <sup>2</sup> 2         23       Ar3d <sup>3</sup> 4s <sup>2</sup> 3         41       Kr4d <sup>5</sup> 5s <sup>1</sup> 3         73       Xe4f <sup>14</sup> 5d <sup>2</sup> 6s <sup>2</sup> 3         81       Xe4f <sup>14</sup> 5d <sup>2</sup> 6s <sup>2</sup> 3         63       Xe4f <sup>7</sup> 5d <sup>0</sup> 6s <sup>2</sup> 3         40       Kr4d <sup>2</sup> 5s <sup>2</sup> 4 | Atomic<br>numberConfiguration ValencyLattice<br>Constant<br>(nm)a3He2s11 $0.3491$ 11Ne3s11 $0.4225$ 19Ar4s11 $0.5225$ 37Kr5s11 $0.5225$ 37Kr5s11 $0.5225$ 37Kr5s11 $0.5225$ 37Kr5s11 $0.5225$ 37Kr5s11 $0.6045$ 56Xe6s22 $0.502$ 26Ar3d <sup>6</sup> 4s22 $0.287$ 24Ar3d <sup>4</sup> 4s22 $0.288$ 42Kr4d <sup>5</sup> 5s12 $0.315$ 74Xe4f <sup>14</sup> 5d <sup>2</sup> 6s <sup>2</sup> 2 $0.316$ 23Ar3d <sup>3</sup> 4s23 $0.303$ 41Kr4d <sup>4</sup> 5s13 $0.33$ 73Xe4f <sup>14</sup> 5d <sup>2</sup> 6s <sup>2</sup> 3 $0.387$ 63Xe4f <sup>7</sup> 5d <sup>0</sup> 6s <sup>2</sup> 3 $0.458$ 40Kr4d <sup>2</sup> 5s <sup>2</sup> 4 $0.361$ | Atomic<br>numberConfiguration/alencyLattice<br>Constant<br>(nm)aVasisth<br>parame3He2s11 $0.3491$ $1.00529$ 11Ne3s11 $0.4225$ $1.07771$ 19Ar4s11 $0.5225$ $1.16737$ 37Kr5s11 $0.5585$ $1.19566$ 55Xe6s11 $0.6045$ $1.23419$ 56Xe6s22 $0.502$ $1.14962$ 26Ar3d <sup>6</sup> 4s22 $0.287$ $0.93847$ 24Ar3d <sup>4</sup> 4s22 $0.288$ $0.93937$ 42Kr4d <sup>5</sup> 5s12 $0.315$ $0.97098$ 74Xe4f <sup>14</sup> 5d <sup>2</sup> 6s23 $0.303$ $0.95586$ 41Kr4d <sup>4</sup> 5s13 $0.33$ $0.98576$ 81Xe4f <sup>14</sup> 5d <sup>2</sup> 6s23 $0.458$ $1.11056$ 40Kr4d <sup>2</sup> 5s24 $0.361$ $1.01502$ | Atomic<br>numberConfiguration/valencyLattice<br>Constant<br>(nm)aVasistha-Singwi<br>parameters in au3He2s110.34911.005290.2997911Ne3s110.42251.077710.284619Ar4s110.52251.167370.2692537Kr5s110.55851.195660.2698155Xe6s110.60451.234190.260556Xe6s220.5021.149620.2732126Ar3d <sup>6</sup> 4s220.2880.939370.3122124Ar3d <sup>4</sup> 4s220.2880.939370.3129442Kr4d <sup>5</sup> 5s120.3160.97130.3054823Ar3d <sup>3</sup> 4s230.3030.955860.3093941Kr4d <sup>4</sup> 5s130.330.985760.3040673Xe4f <sup>14</sup> 5d <sup>2</sup> 6s <sup>2</sup> 30.4581.110560.2807940Kr4d <sup>2</sup> 5s <sup>2</sup> 40.3611.015020.29717 | Atomic<br>numberConfiguration<br>valencyLattice<br>Constant<br>(nm)aVasistha-Singwi<br>parameters in au $T_m$<br>(K)a3He2s110.34911.005290.29979453.711Ne3s110.42251.077710.284637119Ar4s110.52251.167370.26925336.337Kr5s110.55851.195660.26981312.655Xe6s110.60451.234190.2605301.656Xe6s220.5021.149620.27321100226Ar3d <sup>6</sup> 4s220.2870.938470.31221181124Ar3d <sup>4</sup> 4s220.2880.939370.31294213342Kr4d <sup>5</sup> 5s120.3160.97130.30548369523Ar3d <sup>3</sup> 4s230.3030.955860.30939220241Kr4d <sup>4</sup> 5s130.330.985760.30406329381Xe4f <sup>14</sup> 5d <sup>2</sup> 6s <sup>2</sup> 30.4581.10560.28079109140Kr4d <sup>2</sup> 5s <sup>2</sup> 40.3611.015020.297172128 | Atomic<br>numberConfiguration<br>valencyLattice<br>Constant<br>(nm)aVasistha-Singwi<br>parameters in au $T_m$<br>(K)a $E_{coh}$<br>(eV)a3He2s110.34911.005290.29979453.71.6311Ne3s110.42251.077710.28463711.11319Ar4s110.52251.167370.26925336.30.93437Kr5s110.55851.195660.26981312.60.85255Xe6s110.60451.234190.2605301.60.80456Xe6s220.5021.149620.2732110021.926Ar3d <sup>6</sup> 4s220.2880.939370.3129421334.142Kr4d <sup>5</sup> 5s120.3150.970980.3051228956.8274Xe4f <sup>14</sup> 5d <sup>2</sup> 6s <sup>2</sup> 20.3160.97130.3040627507.5773Xe4f <sup>14</sup> 5d <sup>2</sup> 6s <sup>2</sup> 30.330.985760.3040632938.181Xe4f <sup>14</sup> 5d <sup>2</sup> 6s <sup>2</sup> 30.3871.043720.293275771.8863Xe4f <sup>7</sup> 5d <sup>6</sup> 6s <sup>2</sup> 30.4581.10560.2807910911.8640Kr4d <sup>2</sup> 5s <sup>2</sup> 40.3611.015020.2971721286.25 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                          | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ |

<sup>a</sup>Ref. [10]; <sup>b</sup>Ref. [11]; <sup>c</sup>Ref. [12]; <sup>d</sup>Ref. [1]; <sup>e</sup>Ref. [13]; <sup>f</sup>Ref. [14].

In the first step, the two parameters  $(A, r_c)_{HA}$  of HAP suggest a minimization of structure dependent energy of the pure crystal and yield a relation  $A = \frac{ze^2}{r_c}$ . The value of VFE is

computed for different values of parameter A of HAP and it is now plotted for nine ECFs [9] for sixteen different body centered cubic (bcc) closed pack crystals, viz. lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), barium (Ba), iron (Fe), chromium (Cr), molybdenum (Mo), tungsten (W), vanadium (V), niobium (Nb), tantalum (Ta), thallium (Tl), europium (Eu) and zirconium (Zr). There is a sharp fall in VFE near very small value of A in the VFE-A plot and with increase in A VFE shows constancy for all bcc crystals as shown in figure 1 to figure 8.

The value of A and hence  $r_c$  are determined from fitting to all the experimental values of  $(VFE)_{exp}$  or theoretical mean value of  $(VFE)_{theo}$ . Thus a plot of VFE- $r_c$  with fixed value of A will be expected to show definite convergence. The theoretical estimation using an empirical relation [8] is also very close to ab initio calculations by Angsten et. al. [3]. This is shown in the table 1. However there is a systematic change in the fitted value of A for every bcc metal from one ECF to other so also there is a change in the value of  $r_c$  from one ECF to other.

|       | $\Delta A$ for<br>different<br>ECF in eV | $\Delta r_c$ for<br>different<br>ECF in nm | Ashcroft (r       | (nm)                   | Heine-Abarenkov $(A, r_c)_{HA}$ parameters |                    |                              |                     |  |
|-------|------------------------------------------|--------------------------------------------|-------------------|------------------------|--------------------------------------------|--------------------|------------------------------|---------------------|--|
| Metal |                                          |                                            | $(r_c)_{Ash}^{a}$ | Mean $(r_c)_{Ash}^{b}$ | Mean (r <sub>c</sub> ) <sub>HA</sub><br>nm | Other $(r_c)_{HA}$ | Mean (A) <sub>HA</sub><br>eV | Other $(A)_{HA}$ eV |  |
| Li    | 2.03                                     | 0.023                                      | 0.06-0.11         | 0.071 <sup>b</sup>     | 0.1248                                     |                    | 11.5626                      |                     |  |
| Na    | 1.10                                     | 0.022                                      | 0.09              | $0.090^{b}$            | 0.1616                                     |                    | 8.9245                       |                     |  |
| K     | 0.68                                     | 0.022                                      | 0.12              | $0.117^{b}$            | 0.2135                                     |                    | 6.7499                       |                     |  |
| Rb    | 0.81                                     | 0.029                                      | 0.11-0.14         | 0.126 <sup>b</sup>     | 0.2215                                     |                    | 6.5085                       |                     |  |
| Cs    | 0.68                                     | 0.030                                      | 0.11-0.16         | 0.157 <sup>b</sup>     | 0.2469                                     |                    | 5.8383                       |                     |  |
| Ba    | 0.83                                     | 0.007                                      |                   | 0.124 <sup>b</sup>     | 0.2055                                     |                    | 14.0172                      |                     |  |
| Fe    | 3.80                                     | 0.006                                      |                   | 0.061 <sup>c</sup>     | 0.0959                                     |                    | 30.0761                      |                     |  |
| Cr    | 3.06                                     | 0.016                                      |                   | 0.063 <sup>d</sup>     | 0.1022                                     | 0.13 <sup>e</sup>  | 28.2060                      | 21.77 <sup>e</sup>  |  |
| Mo    | 1.67                                     | 0.005                                      |                   | 0.074 <sup>d</sup>     | 0.1265                                     | 0.11 <sup>e</sup>  | 22.7786                      | 31.29 <sup>e</sup>  |  |
| W     | 0.89                                     | 0.003                                      |                   | $0.077^{d}$            | 0.1337                                     | 0.11 <sup>e</sup>  | 21.5442                      | 31.29 <sup>e</sup>  |  |
| V     | 6.02                                     | 0.005                                      |                   | $0.068^{d}$            | 0.0980                                     | $0.08^{\rm e}$     | 44.1535                      | 44.22 <sup>e</sup>  |  |
| Nb    | 4.36                                     | 0.005                                      |                   | 0.079 <sup>d</sup>     | 0.1168                                     | 0.11 <sup>e</sup>  | 37.0047                      | 23.13 <sup>e</sup>  |  |
| Та    | 3.76                                     | 0.004                                      |                   | $0.079^{d}$            | 0.1182                                     | 0.11 <sup>e</sup>  | 36.5779                      | 23.81 <sup>e</sup>  |  |
| Tl    | 1.56                                     | 0.003                                      |                   | 0.096 <sup>d</sup>     | 0.1550                                     |                    | 27.8773                      |                     |  |
| Eu    | 2.27                                     | 0.005                                      |                   | 0.118 <sup>d</sup>     | 0.1713                                     |                    | 25.2297                      |                     |  |
| Zr    | 5.49                                     | 0.004                                      |                   | 0.081 <sup>d</sup>     | 0.1216                                     |                    | 47.4232                      |                     |  |

Input parameters [1 Rydberg = 13.605 eV] and [1 Atomic Unit (AU) = 0.0529177 nm]

<sup>a</sup>Ref. [15]; <sup>b</sup>Ref. [16]; <sup>c</sup>Ref. [13]; <sup>d</sup>Ref. [14]; <sup>e</sup>Ref. [17].

Since the difference is about 10% so the variation of HAP parameters A and  $r_c$  for all nine ECFs are not shown but only their mean value A and  $r_c$ , and the difference ( $\Delta A$ ) and  $\Delta r_c$  are shown in table 2 along with AP for comparison together with other calculated values. The graph between A and  $r_c$  is obviously four different rectangular hyperbolae for four valency values.

# 4. The bibliography

Table 2

[1] Q. S. Mei, K. Lu, Philos. Mag. Lett. 88, 203, 2008.

[2] Lianwen Wang, Metals 4, 570, 2014.

[3] T. Angsten, T. Mayeshiba, H. Wu and D. Morgan, New J. Phys. 16, 015018, 2014.

[4] J. H. Li, X. D. Dai, S. H. Liang, K. P. Tai, Y. Kong, B. X. Liu, Physics Reports 455, 1, 2008.
[5] I. Abarenkov and V. Heine, Phil. Mag. 12, 529, 1965.

[6] W. A. Harrison, Pseudopotentials in the theory of metals, (Benjamin, N.Y.) 1966.

[7] A. Ghorai, Phys. Rev. B 46, 5229, 1992.

[8] A. Ghorai, Philosophical Magazine Letters, DOI:10.1080/09500839.2021.1917781.

[9] A. Ghorai, Acta Physica Polonica A, 134, 2, 549, 2018. DOI: 10.12693/APhysPolA.134.549

[10] C. Kittel, Introduction to Solid State Physics, (Wiley Eastern, New Delhi, 5th ed) 1979.

[11] R. P. Agarwala & D. B. Pruthi, Defect and Diffusion Forum, vol. 66-69 (1989), p. 365.

[12] S. Haldar, A. Ghorai and D. Sen, diffusion-fundamentals.org, 27, 1, 1-8, 2017.

[13] A. Ghorai and Arjun Das, ISRN Metallurgy, Article ID 431742, 4 pages, 2012.

[14] A. Ghorai, T. Choudhury, Arjun Das, R. Dey and S. Ganguly, diffusion-fundamentals.org 17, 4, 1-11, 2012.

[15] M. Cohen and V. Heine, Solid State Phys. eds. H. Ehrenreich, F. Seitz and D. Turnbull (Academic, Inc.) 24, 44, 1970.

[16] A. Ghorai, T. Choudhuri, Arjun Das, R. Dey and S. Ganguly, Defect and Diffusion Forum, 330 (2012), pp.63.

[17] A. O. E. Animalu, Phys Rev. B 8, 3542, 1973.